This question paper contains 2 printed pages]

LB-81-2023

FACULTY OF SCIENCE AND TECHNOLOGY

M.Sc. (Third Semester) EXAMINATION

APRIL/MAY, 2023

[CBCS New]

PHYSICS

PH-16

		(Nuclear and Particle	Physics)				
(Sat	urday	y, 6-05-2022)	Time: 2.00 p.m. to 5.00	p.m			
Time	e— Th	ree Hours	Maximum Mark	s—75			
N.B.	()	(i) All questions are compulsory and	d carry equal marks.	17			
	((ii) Figures to the right indicate full	l marks.				
1.	Wha	t do you mean by electric quandrupole?	Discuss elecric quadrupole mo	oment			
	of a	nucleus.	Fig. Do. Sp.	15			
		Or N	A TOL DE				
	(a)	Explain the concept of nuclear dipo	ole moment in detail.	8			
	<i>(b)</i>	Write a note on the nuclear quant	um numbers.	7			
2. 4	Deri	ve the expression for stopping power	of heavy charged particles.	15			
PEOL.		Or S					
	(a)	Write a short note on the charge of	conjugation and time revers	al. 8			
	(b)	Explain construction and working of	of a scintillation detector.	7			
3.	Discuss the nuclear liquid drop model in detail with its assumptions, evidence						
	and	limitations.		15			
		Or					
N	(a)	Explain the characteristics of Nucle	ear Forces.	8			
	1 1						

P.T.O.

WT	7	2)%		LB—81—	-2023

- (b) State the shell model configuration and assign the spin and particles to the ground state of the nucleus of $_{31}\mathrm{Sc^{41}}$.
- 4. Explain the R-S disintegration law along with the decay constant and the half life period.

Or

- (a) Explain the concept of non-conservation of parity in beta decay processes.
- (b) With suitable examples, explain the selection rules for classification of beta transitions.
- 5. Attempt any three:

15

- Find the binding energy per nucleon for an alpha particle. Given, m_p = 1.007825 amu, m_n = 1.008665 amu, m_α = 4.002603 amu and 1 amu = 931.5 MeV.
- (ii) Write a note on straggling and range for alpha particles.
- (iii) Explain charge independence property of nucleons.
- (iv) Explain the term mean life for radioactive substances.