This question paper contains 6 printed pages]

LB—10—2023

FACULTY OF SCIENCE

M.Sc. (Second Year) (Third Semester) EXAMINATION

APRIL/MAY 2023

(New/CBCS Pattern)

CHEMISTRY

Paper-XV (CH-511/531)

(Advanced Spectroscopic Methods)

(Wednesday, 3-5-2023)

Time: 2.00 p.m. to 5.00 p.m.

Time— Three Hours

Maximum Marks—75

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Attempt any three of the following:

15

- (a) When p-aminophenol is dissolved in water, λ_{max} is at longer wavelength than in acid solution.
- (b) The > C = O stretching frequency in p-nitroacetophenone is higher than in p-methoxyacetophenone.
- (c) In PMR spectroscopy a proton on hetero atom can be detected by the use of D_9O .
- (d) Off resonance ¹³C spectrum is useful in the interpretation.
- (e) Pentanoic acid gives m/2 60 in mass spectrum. Explain.

P.T.O.

2. Attempt any three of the following:

15

(a) Assign the structure of the compound using PMR data :

 $M.F. : C_8H_9Br$

 $\delta(ppm):\,2.7(2H),\,3.4(2H),\,7.22(5H)$

(b) Calculate λ_{max} for the following compounds:

$$\begin{array}{c} CHO \\ \hline \\ H_3CO \\ OH \\ \end{array} \\ OCH_3 \\ \hline \\ OOH \\ \end{array}$$

- (c) The following pairs of compounds can be distinguished by IR spectroscopy:
 - (i) HO O O OH and

$$(ii)$$
 OH OH OH

- (d) What do you understand by metastable ion? Explain the importance of these ions in mass spectroscopy.
- (e) An organic compound with MF $C_5H_{10}O$ displays the following $^{13}C\text{-NMR}$ spectral data :

¹³C-NMR : δ 18(q), 27.3(q), 42(d), 211(s).

Assign the structure of the compound.

3. Solve the following:

(a) Partial hydrogenation of triene shown results into two compounds A and B, having molecular formula C₁₀H₁₄. Compound A shows absorption maximum at 235 nm and B shows at 275 nm. Assign the structures to the A and B compounds.

Or

What is McLafferty rearrangement? Illustrate possible mass fragmentation pathways including McLafferty rearrangement of an aliphatic aldehyde.

(b) An organic compound with MF $C_5H_4O_2$ exhibits the following spectral data :

 $UV \; : \lambda_{max} \; \, 274 \; \; nm$

IR : 3070, 2840, 2755, 1704, 1670, 1170 cm⁻¹

PMR (δ scale, ppm) δ 6.5 (dd, 1H), 7.2 (dd, 1H), 7.5 (dd, 1H), 9.5 (s, 1H).

Rationalize the spectral data and assign structure to the compound.

P.T.O.

WT LB—10—2023

Or

Assign the structure to the compound with MF $C_9H_{10}O_2$ which exhibits the following spectral data :

¹HNMR: δ 2.15 (s, 3H), 3.6(s, 2H), 7.1 – 7.6 (m, 5H).

¹³C NMR : δ 28(q), 51(t), 126(d), 128(d), 129(d), 134(s), 205(s).

Rationalize the spectral data and assign the structure.

4. Solve the following:

(a) How will you follow the course of the following reactions by IR Spectroscopy?

$$\begin{array}{c} \text{Zn/Hg} \\ \hline \text{Conc.HCl} \end{array} \longrightarrow \begin{array}{c} \text{CH}_2\text{-CH}_3 \\ \\ \text{NO}_2 \end{array}$$

Or

Assign structures to the compounds which displays the following PMR data:

Compound A : MF $C_2H_3F_3O$

PMR (δ scale, ppm) : δ 3.2 (s, 1H, exchangeable with D₂O), 3.8(q, 2H).

Compound B : MF $C_{11}H_{15}Br$

PMR: δ 1.5 (s, 6H),

3.1(t, 2H),

3.6 (t, 2H),

7.5 (s, 5H).

Justify your answer.

(b) Deduce the structure of the compound based on the following data:

 $MF : C_8H_{11}ON$

IR : 3450, 3390, 1600, 1580, 1500, 1140 and 840 cm⁻¹

PMR: (δppm) :

 $\delta 1.3 (t, 3H, J = 8 Hz)$

3.4 (s, exchange with D_2O)

3.9 (q, 2H, J = 8 Hz)

7-7.3 (m, 4 H)

Justify the spectral data.

Or

Deduce the structure of the compound based on the following data:

 $Molecular\ formula\ :\ C_{14}H_{10}O_2$

 $UV: \lambda_{max} 260 \text{ nm } (E_{max} 21000)$

IR: 1670, 1600, 1580, 1500 cm⁻¹

P.T.O.

WT (6) LB—10—2023

PMR (δ ppm) : δ 7.5 (m, 36 mm)

7.9 (m, 24 mm)

MS: m/z 210 (m^+) , 105, 77, 51.

Justify the spectral data.

- 5. Write short notes on any three of the following:
 - (a) Stretching and bending vibrations in IR Spectroscopy.
 - (b) Shielding and deshielding effect in PMR.
 - (c) Mass spectrum of 2-Hexanone.
 - (d) Off resonance ¹³C spectrum.