This question paper contains 2 printed pages]

GA-68-2023

FACULTY OF ARTS/SCIENCE

B.Sc. (Fifth Semester) **EXAMINATION**

MARCH/APRIL, 2023

(CBCS/New Pattern)

MATHEMATICS

Paper XII

(Metric Spaces)

(Wednesday, 3-5-2023)

Time: 10.00 a.m. to 12.00 noon

Time— Two Hours

Maximum Marks—40

- N.B. := (i) Attempt all questions.
 - (ii) Figures to the right indicate full marks.
- 1. Prove that continuous image of compact set is compact.

15

Or

- (a) Let (X, d) be any metric space. Prove that a subset F, of X, is closed if and only if its complement, in X, is open.
- (b) Show that the function:

 $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by $d(x, y) = |x - y|, \ \forall \ x, y \in \mathbb{R}$ is a metric on the set \mathbb{R} of all real numbers.

7

- 2. Let Y be a subset of a metric space (X, d), then prove that the following are equivalent:
 - (i) Y is connected
 - (ii) Y cannot be expressed as disjoint union of two non-empty closed sets in Y.

P.T.O.

Or

- (a) Let (X, d_1) and (Y, d_2) be two metric spaces, then prove that $f: X \to Y$ is continuous if and only if $f^{-1}(G)$ is open in X, whenever G is open in Y.
- (b) Prove that every convergent sequence is a Cauchy sequence. 8
- 3. Attempt any two of the following: 5 each
 - (a) Let (X, d) be any metric space. Show that the function d_1 defined by :

$$d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \text{ for all } x, y \in X$$

is a metric on X.

- (b) Prove that every compact subset A of a metric space (X, d) is bounded.
- (c) Show that the space G[0, 1] of all bounded continuous real-valued functions defined on the closed interval [0, 1] with the metric d given by:

$$d(f, g) = \max |f(x) - g(x)|$$

is a complete metric space.

(d) Discuss the connectedness of a subset:

$$D = \left\{ (x, y) \mid x \neq 0, y = \sin \frac{1}{x} \right\}$$

of the Euclidean space R².