

Swami Ramanand Teerth Marathwada University, Nanded

Index

Sr. No.	Content	Page No.
1	Preamble	4-5
2	UG Program Outcomes and Eligibility	5
3	List of Members in Board of Studies in Mathematics	6
4	Structure for Four Year Multidisciplinary Degree Program with Multiple Entry and Exit	7-11
5	Generic Elective course (GE) Structure	12
6	Teaching Scheme (SEM-I)	13
7	Examination Scheme (SEM-I)	14
8	Teaching Scheme (SEM-II)	15
9	Examination Scheme (SEM-II)	16
10	Abbreviations	17-18
11	Mathematics Curriculum: Semester-I	
	i) DSC-1 Topics in Algebra	19-20
	ii) DSC-2: Lab Course I (Calculus Using Sage)	21-22
	Generic/Open Elective (GE/OE)(Basket)GE-1	
12	Foundation of Mathematics	23
13	SEC-1: Basics of MATLAB/Scilab	24-25

	Mathematics Curriculum: Semester-II	26
14	i) DSC-3 Analytical Geometry	
	ii) DSC-4: Lab Course -II (Integral Calculus)	27-28
15	Generic/Open Elective (GE/OE)(Basket)GE- 2	29
15	Basic Algebra	
16	SEC-2: Programming Using MATLAB/Scilab	30-31
17	Assessment Scheme and General Guidelines	32-33

From Desk of Chairman, Board of Studies in the Subject Mathematics

Preamble:

One of the significant reforms in the undergraduate education is to introduce the Learning Outcomes-based Curriculum Framework (LOCF) which makes it student-centric, interactive, and outcome-oriented with well-defined aims, objectives, and goals to achieve. Mathematics is a necessary tool for much of science and engineering. It provides the basic language for understanding the world and gives precision to scientific thought. With the maturing of the Indian industry, there is a large demand for people with strong analytical skills and broad-based background in the mathematical sciences. The curriculum of B.Sc. Mathematics is structured in such a way that the students acquire in-depth knowledge to perceive the principles of the core subjects like Algebra, Calculus, Analytical Geometry, Differential Equations, Real Analysis, etc are covered exclusively to prepare the students to proceed to the next level of Higher Mathematics of Linear Algebra, Advanced Analysis, Mechanics. A list of varied electives like Operations Research, Graph Theory, Number Theory, Numerical Analysis, Topology, Integral Transform etc are furnished to bridge between the Pure and Applied Mathematics. The comprehensive curriculum design yields an excellent career opportunity in Research, Education, Public and Private Sectors, Business sectors, Banking, IT Industries and in every domain of contemporaries.

The overall aim of B.Sc. Mathematics is to:

- Develop broad and balanced knowledge and understanding of definitions, concepts, principles, and theorems.
- Provide students sufficient knowledge and skills enabling them to undertake further studies in mathematics and its allied areas.
- Create deep interest in learning mathematics.
- Encourage the students to develop a range of generic skills helpful in employment, internships, and social activities.

• Familiarize the students with suitable tools of mathematical analysis to handle issues

and problems in mathematics and related sciences.

- Enhance Computational skills and Mathematical reasoning
- Qualify competitive examinations like IIT-IAM, NBHM etc
- Promote and apply mathematics knowledge to do Research/Case Study / Field Project etc.

B.Sc. (Mathematics) Programme Outcomes (POs):

P01	Disciplinary Knowledge: B.A/ B.Sc in Mathematics is the zenith of in-depth knowledge of Algebra, Analysis, Geometry, Calculus and several other branches of mathematics. This also leads to study interdisciplinary areas such as computer science and other allied subjects.
P02	Communication Skills: Ability to communicate various mathematical concepts effectively using examples and their geometrical visualization. Skill and Knowledge attained during program will increase the ability to solve real world problems.
P03	Digital Proficiency: The completion of this programme will enable the learner to use appropriate software's to solve mathematical problems
PO4	Ability to work Independently: The Learner completing this program will grow the capacity to do work independently.
PO5	Critical Thinking and Logical Reasoning: Student will acquire ability of critical thinking and logical reasoning.
P06	Mathematical Principles: students will understand mathematical principles and their applications.
P07	Confidence of Learning: The B.Sc. Programme will develop learners mathematical knowledge and oral, written, and practical skills in a way which will encourage confidence, satisfaction and learning enjoyment.
P08	Ability to peruse advanced studies and research: Students will be motivated high for doing higher education and research in Academically strong institution
P09	Skill/Vocational Courses: Students will have to study skill/Vocational courses related to pure and applied Mathematics.
P010	Generic /Open Elective : As an interdisciplinary approach student will study GE/OE course in Mathematics

min

Lt. Dr. Mahesh Sahebrao Wavare Chairman, Board of Studies of the Mathematics

S.R.T. M. U. Nanded

List of Members in Board of Studies (Mathematics)under the faculty of Science and Technology

Sr No	Name of the Member	Designation	Address	Contact Number and Email ID
1	Prof. Lt. Dr. Mahesh Sahebrao Wavare	BoS Chairman (Ad hoc)under Section26(18) and BoS Member under section 40(2)(c)	Rajarshi Shahu Mahavidyalaya (Autonomous), Latur, Tq. & Dist. Latur.	9890620620 maheshwavare@gmail.com
2	Prof. Dr. Dnyaneshwar Dadaji Pawar	VC Nominated BoS Member Under Section 40(2)(a)	Director School of Mathematical Sciences, SRTM University, Nanded	9423124662 <u>dypawar@yahoo.com</u>
3	Dr. B. Surendranath Reddy	VC Nominated BoS Member Under Section 40(2)(b)(i)	School of Mathematical Sciences, SRTM University, Nanded	9096077789 surendra.phd@gmail.com bsreddy@srtmun.ac.in
4	Dr. Arun Babarao Jadhav	VC Nominated BoS Member Under Section 40(2)(b)(ii)	DSM's College of Arts, Commerce and Science, Parbhani.	7875118707 arunbjadhao@gmail.com
5	Dr. S. S. Handibag	BoS Member Under Section 40(2)(b)(ii)	Mahatma Basweshwar Mahavidylaya, Latur	9011491162 960417748 sujitmaths@gmail.com
6	Prof. Dr. Vandeo Chimnaji Borkar	BoS Member Under Section 40(2)(b)(iii)	Yeshwant Mahavidyalaya, Nanded	9421769217 borkarvc@gmail.com
7	Dr. Kishor Ramrao Gaikwad,	BoS Member Under Section 40(2)(b)(iii)	Science College, Nanded	9923295556 <u>drkr.gaikwad@yahoo.in</u>
8	Dr. Hemant Kishor Undegaonkar,	BoS Member Under Section 40(2)(b)(iii)	Bahairji Smarak College, Basmat, Dist. Hingoli	9822546874 hkundegaonkar@gmail.com
9	Dr. S. S. Bellale	BoS Member Under Section 40(2)(c)	Dayanand Science College, Latur, Tq. & Dist. Latur – 413512	9405417417 sidhesh.bellale@gmail.com
10	Dr. Ram Govindrao Metkar	BoS Member Under Section 40(2)(c)	Indira Gandhi Sr. College, Cidco, New Nanded, Tq. & Dist. Nanded.:	9822312176 rammetkarmath@gmail.com
11	Miss. Jyoti G Narwade	PG Student	Pratibha College of Education Kalbhor Nagar Pune	<u>Ivotinarwade790@gmail.com</u>
12	Sukane Sushima Santosh	UG Student	C/O Shri Shivaji College Udgir Dist Latur	<u>smusrcollege2007@rediffmail.co</u> <u>m</u>

Swami Ramanand Teerth Marathwada University, Nanded

Faculty of Science & Technology

Structure for Four Year Multidisciplinary Degree Program with Multiple Entry and Exit

Subject: Mathematics (Major and Minor)

Year & Level	Semest er	Optional-1	Optional -2	Optional -3	Generic Elective (GE) (Basket 2) (Select one each from Group A and B of Basket 2, should not be related to DSC / DSM in col. 3 and 4)	(Related to DSC Mathematics)	Ability EnhancementCourse (AEC) (Basket 3 for L2) Value Education Courses (VEC) / Indian Knowledge System (IKS) (Common across faculty)	Field Work / Project/ Internship/ OJT/ Apprenticeship / Case Study Or Co-curricular Courses (CC) (Basket 4 for CC) (Common across faculty)	Credits	Total Credit s
1	2	3	4	5	6	7	8	9	10	
	Ι	SMATCT1101- Topics in Algebra (2Cr) (Theory) SMATCP1102 Lab Course-I (Calculus Using SAGE) (2Cr) (Practical) (4cr)	Other than Mathematics (4cr)		GE-1 S <mark>MAT</mark> GE1101	SEC SMATSC1101 (2Cr) Basics of MATLAB /Scilab (2cr)	AECENG1101 (2Cr) ACEMIL1101 (MAR/HIN/URD/KAN /PAL)(2Cr) IKSXXX1101 (2Cr) 6 Credits		22	44

1 (4.5)	II	(Theory) SMATCP1152 Lab Course-II (Integral Calculus) (2Cr) (Practical) (4cr)	Other than Mathematics (4cr)	Other than Mathematics (4cr)	GE-2 SMATGE1151 Basic Algebra (2Cr)	MATLAB/Scilab (2cr)	AECENG1101 (2Cr) AECMIL1151 (MAR/HIN/URD/KA N/PAL)(2Cr) VECCOI1151 (2Cr) Constitution of India 6 Credits		22	
		Exit option: UG Certific	cate in Major <u>Ma</u>	thematics on co	ompletion of 44 credit	s and additional 4 cr	edits from NSQF / Int	ernship		
2 (5.0)	III	SMATCT1201 (2Cr) (Theory) Real Analysis SMATCT1202 (2Cr) (Theory) Group Theory SMATCP1203 (2Cr) (Practical) Lab Course-I(Based on Real Analysis) SMATCP1204 (2Cr) (Practical) Lab Course-II(Based on Group Theory) 8 Credits	SMATMT1201 Applied Mathematics (1Cr) SMATMP1201 Lab Course on Applied Mathematics (1Cr)		GE-3 SMATGE1201 (2Cr) Quantitative Aptitude and Logical Reasoning (2 credits)	SMATSC1201 (2Cr) Introduction to R Programming 2 Credits	AECENG1201 (2cr) AECMIL1201 (2Cr) (MAR/HIN/URD/KA N/PAL) 4 Credits	CCCXXX1201(2Cr) (NCC/NSS/ SPT(sports)/ CLS(Cultural Studies) /HWS (Health Wellness)/ YGE(Yoga Education) / FIT(Fitness) SMATFP1201 (2Cr) 4Credits	22	44
	IV	SMATCT1251 (2Cr)	SMATMT1251 Vector Calculus (1Cr) SMATMP1251 Lab Course on Vector Calculus (1Cr)		GE-4 SMATGE1251 (2Cr) Essential Mathematics for Data Science (2 credits)	VSC-1 SMATVC1251 Latex Typesetting 2 Credits	AECENG1201 (2cr) AECMIL1201 (2Cr) (MAR/HIN/URD/KA N/PAL) VECEVS1251 (2Cr) 6 Credits	CCCXXX1251(2Cr) y(NCC/NSS/SPT(sp orts)/ CLS(Cultural Studies)/HWS(Hea lthWellness)/ YGE(YogaEducatio n) / FIT(Fitness) 2 Credits	22	

Four Year UG(Mathematics) Credit Framework of Sci. & Tech. Faculty of S.R.T.M.U. Nanded

		(Practical) Lab Course-IV(Based on Ring Theory) (8 Credits)								
Ex	it optio	on: UG Diploma in Major <u>Mat</u> SMATCT1301	thematics and M	inor Mathemat	<pre>ics_on completion of 8</pre>	88 credits and addition	onal 4 credits NSQF / [Internship in DSC		
3 (5.5)	V	SMATCT1301Metric Space(3Cr)SMATCT1302LinearAlgebra(3Cr)SMATIK1303Ancient IndianMathematics(2cr)MATCP1303(2Cr)Lab Course-VBased onMATCP1304Lab Course-VIBased onLinearAlgebra) (2cr)(12 Credits)				VSC-2 SMATVC1301 (4Cr) Python Programming (4 Credits)		FP-3/CS-1 SMATHFP1301 / SMATHCS1301 (2Cr) Field Project/ Case Study 2 Credits	22	44
	VI	SMATCT1351 (3Cr) ComplexSMATET1351 AnalysisAnalysis(3Cr T+1Cr P)SMATCT1352Elective -II (A) MechanicsIntegral(B) Topology (C) AnySMATCT1353(C) Any equivalentMultivariablecourse from Calculus (2 Cr)SMATCP1353NPTEL/MOOC (3Cr T+1Cr P)Lab Course-VII (Based onCalculus				VSC-3 SMATVC1351 Essential Mathematics for Machine Learning (2cr)		SMATOJ1351 (4Cr) (OJT) 4 Credits	22	

		Complex Analysis) SMATCP1353 (2Cr) Lab Course- VIII (Based on Integral Transform) (12 Credits)	Exit option: Pac	holor in Science	with Major in Mathema	tics and Minor in DS	M			130
	VII	SMATCT1401 (4Cr) SMATET1401			with Playor in Platicilla					130
		Abstract (3Cr T+1Cr P)							22	
		Algebra (A)Mathematic	RM-1							
		SMATCT1402 al Modeling (4Cr) (B) Dynamics	Research							
4 (6.0)		Advanced and Continuum								
(0.0)		Calculus Mechanics-I								44
		SMATCT1403 (C) Theory of (4Cr) Probability	SMATRM401							
		Complex (D) Any	(4Cr)							
		Analysis equivalent								
		SMATCT1404 course from (2Cr) SWAYAM-	4 Credits							
		Multivariable NPTEL/MOOC								
		Calculus (3Cr T+1Cr P)								
		Credits 14 SMATCT1451								
		(A C m)								
	VIII								22	
		Linear Algebra SMATCT1452 (A) Partial								
		(4Cr) Differential								
		Integration (R) Dynamics						SMATOJ451 (4Cr) (OJT)		
		and Continuum						(0)1)		
		(4Cr) Mechanics-I I								
		Topology (C)						4 Credits		
		(2Cr)								
		(2Cr) (3Cr T+1Cr								
		to Scilab P=4CrJ								
		14 Credits								

Four Year UG(Mathematics) Credit Framework of Sci. & Tech. Faculty of S.R.T.M.U. Nanded

			E	Exit option: Bachel	or of Science w	vith Major in <u>MATHS (H</u>	onors) and Minor in	<u>DSM</u>			172
4 (6.0)	VII	SMATCT1401 (4Cr) Abstract Algebra SMATCT1402 (4Cr) Advanced Calculus SMATCT1403 (2Cr) Multivariable Calculus 10 Credits	ATEC1401 (4Cr) Partial erential ations Dynamics Continuum hanics-I Theory of bability Any valent rse from YAM- EL/MOOC Credits	Research Methodology SVECRM1401 (4Cr) 4 Credits					Research Project SMATRP1401 (4Cr)	22	44
	VIII	Linear Algebra (A) Pa SMATCT1452 Differ (4Cr) Equat Topology (B) D SMATCT1453 and C (2Cr) Mech Introduction (C) to Scilab Comb	(4Cr) Partial erential ation Dynamics						Research Project SMATRP1451 (8Cr)	22	
			tion: Bache	lor of Science with	n Major in <u>MA'</u>	<u> THS (Honours with Re</u>	<u>search)</u> and Minor i	n <u>Mathematics</u>			176
Total C	redits	Major -92/	/84	Minor1 -12 + RM - 04	Minor-2 08	GE/OE - 08	V-08 + S-06	AEC-8 +MIL-08 VEC-4 + IKS-2 Total 22	(CC-04+FP/CS- 04+0JT-04+RP- 12) 24	17	76

<u>Basket</u>: Generic Elective course (GE) Structure

Note: Generic Elective Courses for semesters I and II

Sem	BoS	CODE	Credits for Course	Open/Generic Elective Corse	Nature of Course
Sem I	BoS in Mathematics	SMATG1101	2 Cr	Foundation of Mathematics	Theory
Sem II	BoS in Mathematics	SMATG1151	51 2 Cr Basic Algebra		Theory

<u>B. Sc. First Year Semester I (Level 4.5)</u>

<u>Teaching Scheme</u>

	Course Code	Course Name	Cre	dits Assigr	ned		g Scheme week)
		Course Name		Practical	Total	Theory	Practical
Optional:	SMATCT1101	Topics in Algebra	02		02	02	
Mathematics	SMATCP1102	Lab Course-I Calculus Using SAGE		02	02		04
GE-1	SMATGE1101	Foundation of Mathematics	02		02	02	
SEC-1	SMATSC1101	Basics of MATLAB/Scilab		02	02		04
AEC-1	SAECEN1101	Compulsory English	02		02	02	
AEC-2	SAECMIL1101	Hin/Mar/Kan/Pali/ Sanskrit/etc.	02		02	02	
IKS-1	SVECCI1101	Title from Concern BoS	02	-	02	02	
	Total Credi	ts	10	04	14	08	12

<u>B. Sc. First Year Semester I (Level 4.5)</u> <u>Examination Scheme</u>

[20% Continuous Assessment (CA) and 80% End Semester Assessment (ESA)]

				Th	eory		_		Total
	Course Code	Course Name	Cont	inuous As (CA)	sessment	ESA	Pra	actical	Col (6+7) / Col (8+9)
	(2)	(3)	Test I (4)	Test II (5)	Avg of (T1+T2)/2 (6)	Total (7)	CA (8)	ESA (9)	(10)
Optional:	SMATCT1101	Topics in Algebra	10	10	10	40			50
Mathematics	SMATCP1102	Lab Course-I Calculus Using SAGE					10	40	50
GE-1	SWATGETTUT	Foundation of Mathematics	10	10	10	40			50
SEC-1	SMATSC1101	Basics of MATLAB/Scilab					10	40	50
AEC-1	SAECEN1101	Compulsory English	10	10	10	40			50
AEC-2	SAECMIL1101	Hin/Mar/Kan/Pali/ Sanskrit/etc.	10	10	10	40			50
IKS-1	SVECCI1101	Title from Concern BoS	10	10	10	40			50

B. Sc. First Year Semester II (Level 4.5)

Teaching Scheme

	Course Code	Course Name	Crea	lits Assig	gned		g Scheme week)
			Theory	Practical	Total	Theory	Practical
Optional :	SMATCT1151	Analytical Geometry	02		02	02	
Mathematics	SMATCP1152	Lab Course-II Integral Calculus		02	02		04
GE-2	SMATGE1151	Basic Algebra	02		02	02	
SEC-2	SEC-2 SMATSC1151 Programming Using MATLAB /Scilab			02	02		04
AEC-3	AECENG1101	English Compulsory					
AEC-4 AECMIL1151 Hin/Mar/Pal/Kan/Setc.		Hin/Mar/Pal/Kan/Sanskrit/ etc.	02		02	02	
VEC-1 SVECCI1151 Constitution of India		02	-	02	02		
	Total Credits				14	08	12

B. Sc. First Year Semester II (Level 4.5)

Examination Scheme

[20% Continuous Assessment (CA) and 80% End Semester Assessment (ESA)]

				Th	eory				Total
Subject	Course Code	Course Name (3)	Continuous Assessment (CA)			ESA	Practical		[Col (6+7) / Col (8+9)]
(1)	(2)		Test I (4)	Test II (5)	Avg of (T1+T2)/2 (6)	Total (7)	CA (8)	ESA (9)	(10)
Optional :	SMATCT1151	Analytical Geometry	10	10	10	40			50
Mathematics	SMATCP1152	Lab Course-II Integral Calculus					10	40	50
GE-2	SMATGE1151	Basic Algebra	10	10	10	40			50
SEC-2	SMATSC1151	Programming Using MATLAB /Scilab					10	40	50
AEC-3	AECENG1101	English Compulsory	10	10	10	40			50
AEC-4	AECMILIISI	Hin/Mar/Pal/Kan/Sanskrit/ etc.	10	10	10	40			50
VEC-1	SVECCI1151	Constitution of India	10	10	10	40			50

Abbreviations:

1.	DSC	: Discipline Specific Core (Major)	
2.	CC/CT	: Core Course /Core Theory(Related Major)	
3.	СР	: Core Practical	
4.	DSE	: Discipline Specific Elective (Major)	
5.	EC /ET	: Elective Course /Elective Theory	
6.	EP	: Elective Practical	
7.	MC/MT	: Minor Course /Minor Theory	
8.	MP	: Minor Practical	
9.	DSM	: Discipline Specific Minor	
10.	GE/OE	: Generic/Open Elective	
11.	VSEC	: Vocational Skill and Skill Enhancement Course	
12.	VSC	: Vocational Skill Courses	
13.	VC	: Vocational Course	
14.	SEC	: Skill Enhancement Course	
15.	SC	: Skill Course	
16.	AEC	: Ability Enhancement Course	
17.	IKS: India	an Knowledge System	
18.	VEC	: Value Education Courses	
19.	OJ	: On Job Training	
20.	FP	: Field Projects	
21.	СС	: Co-Curricular Courses	
22.	RP	: Research Project/Dissertation	
23.	FP	: Field Project	
24.	IP	: Internship Program	
25.	CS	: Case Study	

26.	CLS	: Cultural Studies	
27.	FIT	: Fitness	
28.	HWS	: Health and Wellness	
29.	YGE	: Yoga	
30.	NCC	: National Cadet Core	
31.	NSS	: National Service Scheme	
32.	SPT	: Sports	
33.	MIL	: Modern Indian languages	
34.	RM	: Research Methodology	

Mathematics Curriculum

B.A. / B.Sc. I (SEMESTER-I)

DSC-1 Topics in Algebra

		ou i ropreo minge					
Programme: Certificate	Year: First	Course Type	Semester: I				
Course in Mathematics	Level 4.5	DSC					
Class: B.A./B.Sc. I							
Prerequisites: Elementary Knowledge of Algebra							
Course Code: SMATCT1101	Course Title	e: Topics in Algebra					
Course Outcomes:							
CO1: Students can Sort one-one, onto functions and can compute equivalence relation.							
CO2: Students Can apply La	w of Inductio	n and Euclidean Alg	gorithms				
CO3: Student can compute F	CO3 : Student can compute REF, RREF and rank of any ordered matrix						
CO4: Student can solve Line	CO4: Student can solve Linear System of Equation and apply Caley Hamilton Theorem						
Credits: 2	Credits: 2 DSC-1						
Max. Marks: 50 Min. Passing Marks:20							
Total No. of Lectures – Tutorials – Practical (in hours per week): L-T-P: 2-0-0							

	Topics in Algebra	
Module	Торіс	No of
		Lectures
Ι	Sets Functions and Relations:	08
	Basic terminologies, Relations on sets, Type of relations, Equivalence	
	Relations, Functions: One-one, onto functions and bijections, Composition	
	of functions, Equivalences Classes, Partitions of a Set.	
II	Elementary Number Theory:	07
	Mathematical Induction, The Division Algorithm, The Greatest Common	
	Divisor, The Euclidean Algorithm, The Fundamental Theorem of	
	Arithmetic, Basic Properties of Congruences and Examples on it.	
III	Elementary Operations and Rank of Matrix:	07
	Elementary Operations, Equivalent Matrices, Row Rank and Column,	
	Rank of a Matrix, Echelon Form of the Matrix, Row Reduced Echelon	
	Form	
IV	System of Linear Equations and Caley Hamilton Theorem:	08
	System Linear Equations (Homogeneous and Non-Homogeneous),	
	Characteristic values, Characteristic vectors, Cayley Hamilton theorem.	
	Text Books	
1	Ajit Kumar, S. Kumeresan and Bhaba Kumar Sarma, A Foundation Course in	1
	Mathematics Narosa Publication House (For Module I)	
2	David M. Burton, Elementary Number Theory, McGraw-Hill 7th Edition (For Mod	
3	Om P. Chug, Kulbhushan Prakash, A.D.Gupta, Topics in Algebra, Anmol Publi	cations
	Pvt. Ltd., New Delhi , First Edition 1997 (For Module III and IV)	
	Reference Books	
1	A text books of matrices, By Shanti Narayan (S. Chand & Company Ltd) Ram	i Nagar,
	New Delhi	
2	Seymor Lipschutz, Theory and Problems of linear Algebra, third edition (Ta	ta
	McGraw Hill)	
3	K.B. Datta, Matrix & Linear Algebra, DHI Publication	

4	I. Niven, H. Zuckerman V.H.L. Montgomery, An Introduction to theory of numbers 5th Edition John Wiley & Sons
5	T.M. Apstol, Introduction to analytical number theory by Springer Verlang, New York.

B.A. / B.Sc. I (SEMESTER-I) DSC-2: Lab Course -I (Calculus Using SAGE)

DSC-2: Lab Course -I (Carculus Using SAGE)							
Programme: Certificate	Year: First	Course Type	Semester: I				
Course in Mathematics	Level 4.5	DSC					
Class: B.A./B.Sc. I							
Prerequisites: Basic Knowledge of Computer handling							
Course Code: SMATCP1102	Course Title	Lab Course-I (Calculus Using SAGE)				
Course Outcomes:							
After successful completion	of the course	e student will b	e able to				
CO1: Do basic programming	CO1: Do basic programming in Sage						
CO2: Do practical's on Calcu	lus						
CO3 : Know Programming and Data Structures							
CO4: Plot 2D, 3D Curve and	CO4: Plot 2D, 3D Curve and display solution of differential equation.						
Credits: 2	DSC-2						
Max. Marks: 50 Min. Passing Marks:20							
Total No. of Lectures – Tutorials – Practical (in hours per week): L-T-P: 2-0-2							

	Lab Course-II (Calculus Using SAGE)				
Module	Торіс	No of			
		Lectures			
Ι	Getting to Grips with Sage:	6T+6P			
	The Sage Program, A Tool for Mathematics, Sage as a Calculator First				
	Computations, Elementary Functions and Usual Constants, On-Line Help				
	and Automatic Completion, Python Variables Symbolic Variables First				
TT	Graphics	07.100			
II	Analysis :	8T+10P			
	Symbolic Expressions and Simplification, Symbolic Expressions, Transforming Expressions, Usual Mathematical Functions Assumptions,				
	Some Pitfalls, Equations, Explicit Solving, Equations with no Explicit				
	Solution, Analysis, Sums, Limits, Sequences, Power Series Expansions,				
	Series, Derivatives, Partial Derivatives, Integrals.				
III	Programming and Data Structures:	7T+8P			
	Syntax, General Syntax, Function Calls, More About Variables,				
	Algorithmics, Loops, Conditionals, Procedures and Functions, Example:				
	Fast Exponentiation, Input and Output, Lists and Other Data Structures,				
	List Creation and Access, Global List Operations, Main Methods on Lists,				
	Examples of List Manipulations, Character Strings, Shared or Duplicated				
	Data Structures, Mutable and Immutable Data Structures, Finite Sets,				
	Dictionaries.				
IV	Graphics:	7T+8P			
	2D Graphics, Graphical Representation of a Function, Parametric Curve,				
	Curve in Polar Coordinates, Curve Defined by an Implicit Equation, Data				
	Plot, Displaying Solutions of Differential Equations Evolute of a Curve, 3D				
	Curves.				
1	Text Book				
1	Paul Zimmermann, Nathann Cohen, Alexandre Casamayou, Mathematical	agiatu far			
	Computation with SageMath available from on http://www.sagemath.org, Society for				
	Industrial & Applied Mathematics, U.S. Reference Books				

1	Razvan A Mezei, An Introduction to SAGE Programming: With Applications to SAGE					
	Interacts for Numerical Methods, Springer					
2	www.sagemath.org					
3	Varun Kumar, Basics of SageMath: Mathematics (Practical), Amazon KDP					
4	William Granville and David Joyner, Differential Calculus and Sage					

List of Practical's

Sr	Title of Practical	Number of
		Examples
1	Practical on Elementary Functions and Usual Constants	02
2	Practical on Symbolic Variables	02
3	To define symbolic functions and Manipulate expressions	02
4	Practical's on Sums and Sequence	02
5	Practical's on Power series Expansion	02
6	Practical's on Derivatives	02
7	Practical's on Partial Derivatives	02
8	Practical's on Integration	02
9	Practical's on Lists	02
10	Practical's on Data Structures	02
11	Practical's on 2D Plots	03
12	Practical's on 3D Plots	03
13	Practical's on displaying solutions of differential equations	02
14	Practical's on Parametric Curve, Curve in Polar Coordinates,	02

Note: Record book will consist of 30 list of practical's and may vary college to college and for internal assessment 05 marks for record books and for 5 marks conduct two internal test and make it average of it.

Generic Elective/Open Elective (Basket)

B.A. / B.Sc. I (SEMESTER-I)

GE/OE: Foundation of Mathematics

GE/OE: Foundation of Mathematics							
Programme: Certificate	Year: First	Course Type	Semester: I				
Course in Mathematics	Level 4.5	GE/OE					
Class: B.A./B.Sc. I		For Basket 2					
Prerequisites: Basic Knowledge of Computations							
Course Code: SMATGE1101	Course Title	: Foundation of Matl	hematics				
Course Outcomes:							
After Successful completion of	this course st	udents can able to					
CO1: Compute distance formul	a, midpoint fo	ormula, equation of l	lines ,parallel lines and perpendicular				
lines							
CO2: Find symmetry of graphs							
CO3: Discuss limit and continu	ity of given fu	nction'					
CO4: Apply derivatives to compute maxima and minima							
Credits: 2	GE/OE						
Max. Marks: 50	Max. Marks: 50 Min. Passing Marks:20						
Total No. of Lectures – Tutorials – Practical (in hours per week): L-T-P: 2-0-0							

Foundation of Mathematics						
Module	Торіс	No of				
		Lectures				
Ι	Coordinates Systems and Graphs of Equations:	08				
	The coordinate of a point on a line, Absolute value, Coordinate of a point					
	in a plane, Distance formula, Midpoint Formulas, Graphs of equation,					
	Straight line, Slope, Equation of a line, parallel lines, perpendicular lines.					
II	Intersection of Graphs, Symmetry and Functions:	07				
	Intersection of graphs, Symmetry, Symmetry about a line, Symmetry					
	about a point, Functions and their graphs, Notation of a function,					
TT	Intervals, Even and Odd functions, Zeros of polynomial.	00				
III	Limit and Continuity:	08				
	Limits, Properties of limits, Existence or Non-existence of a limit, One sided limit, Infinite limits, limits at infinity, Continuity, Definition and					
	properties of continuity, One sided continuity, Continuity, Definition and					
	interval.					
IV	Derivatives and Applications:	07				
	The slope of tangent line, Derivative, Differentiability and Continuity,					
	Further rules for derivatives, Maximum and Minimum problems, Relative					
	Extrema, Absolute Extrema, Chain rule, Composite Function, Implicit					
	differentiation.					
	Text Book					
1	Elliott Mendelson, Schaum's Outline of Theory and problems of "Beginning	Calculus"				
	Second edition, Tata McGraw-Hill publishing company limited.					
	Reference Books					
1	Joseph Edwards, "Differential Calculus for Beginners", Arahant publication.					
2	George B. Thomas, Jr. And Ross L. Finney Calculus and Analytical Geometry	7				
	(Pearson)					
3	J. H. Heinbockel , Introduction to Calculus					
4	P.K Jain. Khalil Ahemad, Textbook of Analytical geometry of two dimension					
5	Suggested digital platform: NPTEL/SWAYAM/MOOCs					

Skill Enhancement Course

B.A. / B.Sc. I (SEMESTER-I)

SEC- Basics of MATLAB/Scilab

Programme: Certificate	Year: First	Course Type	Semester: I		
8		51	bennester. I		
Course in Mathematics	Level 4.5	SEC			
Class: B.A./B.Sc. I					
Prerequisites: 1. Basic	knowledge o	of computer op	erating system		
Course Code: SMATSC1101	Course Title:	Basics of MATI	LAB/Scilab		
	Co	ourse Outcome	25:		
After successful completion	After successful completion of the course student will be able to				
CO1: Perform basic MATLA	B/Scilab com	mands and will	apply MATLAB/Scilab for elementary		
number theory problem.					
CO2: Do Arithmetic Operation	CO2: Do Arithmetic Operations of Arrays				
CO3 : Solve elementary linea	ır Algebra exa	amples using M	ATLAB/Scilab		
CO4: Compute Row Reduced Echelon Form					
Credits: 2	SEC-1				
Max. Marks: 50 Min. Passing Marks:20					
Total No. of Lectures – Tutorials – Practical (in hours per week): L-T-P: 2-0-2					

	Basics of MATLAB/Scilab	
Module	Торіс	No of
		Lectures
		and
		Practical's
Ι	Introduction to MATLAB/Scilab:	10L+5P
	MATLAB Programming language, Built-in Functions, Graphics,	
	computations, External interface, and Tool boxes. MATLAB windows,	
	desktop, command window, workspace, Figure and Editor Windows,	
	Input-output, File types, platform dependence, Printing.	
II	Programming in MATLAB/Silab:	8L+7P
	Scripts and functions. Script files, function files: Executing of	
	function, writing good functions, sub functions, compiled functions.	
III	Matrix as array:	5L +10P
	Matrices and Vectors, input, indexing, matrix manipulation, creating	
	vectors. Matrix and Array operations, Arithmetic operations, Relational	
	operations, logical operations,	
IV	Linear Algebra and MATLAB/Scilab:	5L +10P
	Elementary math functions, matrix functions, character string. finding	
	the determinant, rank, inverse of matrix, Solving Linear system of	
	equations and computation of row reduced echelon form finding eigen-	
	values and eigenvectors.	
	Recommended Books/Links	
1	Rudra Pratap ,Getting Started With MATLAB 7, Oxford University Press(Fo	r MATLAB
	User)	
2	Tejas Sheth ,SCILAB: A Practical Introduction to Programming and Probler	n Solving
	(Scilab User)	
3	Suggested digital platform: NPTEL/SWAYAM/MOOCs	

4	Amos Gilat ,MATLAB An introduction with applications Wiley India Edition 4 th 2012
5	https://spoken-tutorial.org/tutorial-
	search/?search foss=Scilab&search language=English
6	https://nptel.ac.in/courses/103106118
7	S S Alam S N Alam, Understanding Matlab A Textbook For Beginners, Wiley India
	2019
8	Dr. Devendra Chouhan, Dr. Uday Dolas ,Basic Programming Concepts of SCILAB,
	OrangeBooks Publication 2022

List of Practical's

Sr	Title of Practical	Number of
		Examples
1	To find prime factors of given numbers	02
2	To find greatest common divisor and To generate integer m and n	02
	such that gcd(a,b)=ma+nb	
3	To find Least common multiple of given two numbers	02
4	To generate the list of prime numbers	02
5	To check singularity and non-singularity of a given square matrix	02
6	To find row reduced echelon form	02
7	To find rank of matrix	02
8	To solve given system of linear equations	02
9	To find Characteristic polynomial of a square matrix	02
10	To find eigen values and eigen vectors of a square matrix.	02

Note:

1. MATLAB/Scilab or any freeware suitable software can be used to run these programs.

2. Record book will consist of 20 list of practical's and may vary college to college and for internal assessment 05 marks for record books and for 5 marks conduct two internal test and make it average of it.

		110	bessmen	u benem		LU			
			Theory			Practical		Total	
Course Code	Course Name		СА		ECA	Pra	cucai	Col (8+9)]	
(2)	(3)	Test I (4)	Test II (5)	Avg (T1+T2)/2 (6)	ESA (7)	CA (8)	ESA (9)	(10)	
	Basics of MATLAB/Scilab					10	40	50	

Assessment Scheme for SEC

Mathematics Curriculum (Semester -II)

B.A. / B.Sc. I (SEMESTER-II)

DSC-4: Analytical Geometry

Programme: Certificate	Year: First	Course Type	Semester: II		
Course in Mathematics	Level 4.5	DSC			
Class: B.A./B.Sc. I					
Prerequisites: Elementary	y knowledge	e of coordinate	e axis and XII (Mathematics)		
Course Code: SMATCT1151	Course Title:	Analytical Geom	netry		
	Course Outcomes:				
CO1: After successful compl	etion of this	course students	s can able to Study and analyse		
Geometry of two dimension	Geometry of two dimensions.				
CO2: Learners can compute	CO2: Learners can compute angle between two planes and lines				
CO3 : Learners can compute	tangent to gi	iven Sphere			
CO4: Student can study vari	CO4: Student can study various forms of Sphere				
Credits: 2	DSC-4				
Max. Marks: 50	Max. Marks: 50 Min. Passing Marks:20				
Total No. of Lectures – Tutorials – Practical (in hours per week): L-T-P: 2-0-0					

	Analytical Geometry			
Module	Торіс	No of		
		Lecture		
Ι	Analytical Geometry of Two Dimension:	08		
	Change of axes: translation and rotation, Conic Sections: General equation of			
	second degree in two variables, Reduction to standard form, center of conic,			
	nature of conic.			
II	Planes:	07		
	Direction cosines and direction ratios, Equation of plane, Normal form,			
	transform to the normal form, Plane passing through three non-collinear points,			
	Intercept form, Angle between two planes. Distance of a point from a plane,			
	Distance between parallel planes, Systems of planes, two sides of planes,			
III	Bisector planes. Lines in three dimension:	08		
111	Equations of a line in Symmetric and unsymmetrical forms, Line passing through	08		
	two points, Angle between a line and a plane. Perpendicular distance of a point			
	from a plane			
IV	Sphere:	07		
	Equation of a sphere in different forms, plane section of a sphere, Equation of a			
	circle, sphere through a given circle, Intersection of a sphere and a line, Equation			
	of tangent plane to sphere.			
]	ext Books			
1	Von Steuben," Analytic Geometry in Two and Three Dimensions" (For Module -I)			
2	Shanti Narayan, Analytical Solid Geometry S. Chand and Company			
	Ltd, New Delhi, 1998			
	Reference Books			
1	P.K.Jain and Khalil Ahmad, A Text Book of Analytical Geometry of Three			
	Dimensions, Wiley Estern Ltd. 1999.			
2	A text book of Analytical Geometry of two dimensions, By P.K Jain and Khalil			
	Ahmed, (Wiley Eastern Ltd, 1994)			
3	A text book of Analytical Geometry of three dimensions, By P. K Jain and Khalil			
	Ahmed, (Wiley Eastern Ltd, 1999.)			
4	Suggested digital platform: NPTEL/SWAYAM/MOOCs			

B.A. / B.Sc. I (SEMESTER-II) DSC-5: **Lab Course-II**(Integral Calculus)

DSC-5: Lab Course-II(Integral Calculus)						
Programme: Certificate	Year: First	Course Type	Semester: II			
Course in Mathematics	Level 4.5	DSC				
Class: B.A./B.Sc. I						
Prerequisites: Elementary	y knowledge	e of integration	n, partial derivatives and XII			
(Mathematics)						
Course Code: SMATCP1152	Course Title:	: Lab Course-II (I	ntegral Calculus)			
	Course Outcomes:					
After Successful completion	of this cours	e students can				
CO1: Discuss integral as lim	it of sum and	l apply fundame	ental theorems of Integral Calculus.			
CO2: Study Beta and Gamma	a Functions.					
CO3 : Do multiple integration	ns.					
CO4: Study application of M	CO4: Study application of Multiple integral.					
Credits: 2	DSC-5					
Max. Marks: 50	Aax. Marks: 50 Min. Passing Marks:20					
Total No. of Lectures – Tutorials – Practical (in hours per week): L-T-P: 2-0-2						
Iotal No. of Lectures – Tutoriais – Practical (in nours per week): L-I-P: 2-0-2						

	Lab Course-II (Integral Calculus)	
Module	Торіс	No of
		Lectures
Ι	Integral as limit of Sum:	08T+7P
	Integral as a limit of sum, Properties of Definite integrals, Fundamental	
	theorem of integral calculus, Summation of series by integration, Infinite	
	integrals, Differentiation and integration under the integral sign.	
II	Beta and Gamma Functions:	07T+8P
	Beta function, Properties and various forms, Gamma function, Recurrence	
	formula and other relations, Relation between Beta and Gamma function,	
	Evaluation of integrals using Beta and Gamma functions.	
III	Multiple Integral:	06T+9P
	Double integrals, Repeated integrals, Evaluation of Double integrals,	
	Double integral in polar coordinates, change of variables, Change of order	
	of integration in Double integrals, Triple integrals, Evaluation of Triple	
	integrals, Dirichlet's theorem	
IV	Applications of Multiple Integral:	05T+10P
	Area bounded by curves (quadrature), Rectification (length of curves),	
	Volumes and Surfaces of Solids of revolution.	
	Text Book	
1	Shanti Narayan, P.K. Mittal, Integral Calculus, S. Chand 2005	
	Reference Books	
1	Gorakh Prasad, Chandrika Prasad, Text Book on Integral Calculus 2002	
2	T.M. Apostal, Calculus Vol. I, John Wiley & Sons Inc., 1974	
3	H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc. 2007	
4	G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2010	
5	Suggested digital platform: NPTEL/SWAYAM/MOOCs	

List of Practical's

Sr	Title of Practical	Number
		of
		Examples
1	To solve examples on Definite integrals	02
2	To apply fundamental Theorem of Integral Calculus	02
3	To apply differential rule under integral sign	02
4	To proof convergence of Beta and Gamma Function	02
5	To Solve Integrals using Beta and Gamma function	02
6	To Solve double integrals, repeated integral	02
7	To solve double integral using polar coordinates	02
8	To solve examples on change of variables	02
9	To solve examples using change the order of integration in Double integrals	02
10	To solve examples on triple integrals	02
11	To apply Dirichlet's theorem	02
12	To compute area bounded by curves	02
13	To Compute length of curve	02
14	To compute Volumes of Solids of revolution	02
15	To compute Surfaces of Solids of revolution	02

Note: Record book will consist of 30 list of practical's and may vary college to college and for internal assessment 05 marks for record books and for 5 marks conduct two internal test and make it average of it.

Generic/Open Elective (GE/OE)(Basket)

B.A. / B.Sc. I (SEMESTER-II) Ge/OE : Basic Algebra

	Ge/OE : Basic Algebra				
Programme: Certificate	Year: First	Course Type	Semester: II		
Course in Mathematics	Level 4.5	GE/OE			
Class: B.A./B.Sc. I					
Prerequisites	I				
Course Code: SMATGE1151	Course Title	Basic Algebra			
Course Outcomes:					
After Successful completion					
CO1: Uunderstand matrices	and determi	nants.			
CO2: Solve system of linear	equations.				
CO3 : Calculate rate of intere	est.				
CO4: Solve LPP and apply it in real life problems.					
Credits: 2	Credits: 2 GE/OE				
Max. Marks: 50 Min. Passing Marks:20					
Total No. of Lectures – Tutorials – Practical (in hours per week): L-T-P: 2-0-0					

	Basic Algebra						
Module	Торіс						
		Lectures					
Ι	Matrices and Determinants:						
	Definition of a Matrix, Types of Matrices, Algebra of Matrices,						
	Determinants, Adjoint of a Matrix, Inverse of a Matrix via Adjoint Matrix						
II	System of Linear Equations:	08					
	Homogeneous System of Linear equations, Condition for Consistency of						
	homogeneous system, Solution of Non-homogeneous System of Linear						
	equations (not more than three variables), Applications in Business and						
	Economics, Examples and Problems.						
III	Simple and Compound Interest:	08					
	Concept of Present value and Future value, Simple interest, Compound						
	interest, Nominal and Effective rate of interest, Examples and Problems						
IV	LPP:	06					
	Definition and terms in a LPP, formulation of LPP, Solution by Graphical						
	method, Examples and Problems						
	Reference Books						
1	S. A. Bari ,Practical Business Mathematics ,New Literature Publishing Company New						
	Delhi.						
2	K. Selvakumar ,Mathematics for Commerce ,Notion Press Chennai.						
3	Khattar & S. R. Arora , Business Mathematics with Applications Dinesh S. Chand						
	Publishing New Delhi.						
4	P. K. Gupta & D. S. Hira ,Operations Research ,S. Chand Publishing New Delh	i.					

Skill Enhancement Course

B.A. / B.Sc. I (SEMESTER-II)

SEC- Programming Using MATLAB/Scilab

	0		/						
Programme: Certificate Course	Year: First	Course Type	Semester: II						
in Mathematics	Level 4.5	SEC							
Class: B.A./B.Sc. I									
Prerequisites: Elementary knowledge of coordinate axis and XII (Mathematics)									
Course Code: SMATSC1151	Course Title:	Programming Usi	ng MATLAB						
	Course Outcomes:								
After successful completion of this course students are able to:									
CO1: Do programming using MATLAB									
CO2: Define function and functi	on files								
CO3 : Plot two dimensional grap	hs								
CO4: Plot three dimensional plots.									
Credits: 2	Credits: 2 SEC								
Max. Marks: 50 Min. Passing Marks:20									
Total No. of Lectures – Tutorials – Practical (in hours per week): L-T-P: 2-0-2									

	Programming Using MATLAB//Scilab							
Module	Торіс	No of						
		Lectures						
Ι	Programming in MATLAB: Relational and Logical Operators, Conditional Statement, The if-end structure, if-else- end Structure ,The Switch Case Statement ,Loops ,For -end loop while-end loop							
II	User Defined Functions and Function Files: Creating function file, Structure of function file, Local and Global Variable, User defined function.	06L+7 F						
III	Two Dimensional Plots : The plot command, Plot of Given Data, Plot of given Function, the fplot command Plotting multiple plots in same figure window, labelling of plot and legends, Histograms, Polar Plots	10L+10I						
IV	Three Dimensional Plots:Line Plot, Mesh and surface plot, Plots with special Graphics, The view Command							
Т	ext Book							
1	Amos Gilat, MATLAB An introduction with applications Wiley India Edition 4 th 2012(M User)	ATLAB						
2	Tejas Sheth ,SCILAB: A Practical Introduction to Programming and Problem Solving (Sc	ilab User]						
	Reference Books							
1	Rudra Pratap ,Getting Started With MATLAB 7, Oxford University Press							
2	https://spoken-tutorial.org/tutorial-search/?search_foss=Scilab&search_language=En	<u>glish</u>						
3	https://nptel.ac.in/courses/103106118							
4	S S Alam S N Alam, Understanding Matlab A Textbook For Beginners, Wiley India 2019							
5	Dr. Devendra Chouhan, Dr. Uday Dolas ,Basic Programming Concepts of SCILAB, Orange	Books						
5	Publication 2022							

List of Practical's

Sr	Title of Practical	Number of Examples		
1	To Evaluate logical and relational mathematical expression	02		
2	To write the programs using conditional statement	02		
3	To Execute program using loops	02		
4	To define function and evaluate for its value	02		
5	To define anonymous function with one or more variable	02		
6	To plot graph of given function with labeling	02		
7	To multiple plots in one figure window	02		
8	To plot with polar coordinates	02		
9	To plot three dimensional plot	02		
10	To Plot with special graphics.	02		

Note:

1. MATLAB/Scilab or any freeware suitable software can be used to run these programs

2. Record book will consist of 20 list of practical's and may vary college to college and for internal assessment 05 marks for record books and for 5 marks conduct two internal test and make it average of it.

Assessment Scheme for SEC

Course Code (1)	Course	Theory CA				- Practical		Total Col (7+8)]	
	Name (2)	Test I (3)	Test II (4)	Avg (T1+T2)/2 (5)	ESA (6)	CA (7)	ESA (8)	(10)	
SMATS1151	Programming Using MATLAB/Scilab					10	40	50	

Assessment Scheme for Optional (Theory)/GE/Theory paper

		Theory					ctical	Total	
	Course Name (2)	CA				114	ciicai	Col (5+6)]	
Course Code (1)		Test I (3)	Test II (4)	Avg (T1+T2)/2 (5)	ESA- (6)	CA (7)	ESA (8)	(10)	
Major(Theory)/Minor /OE/GE	Major(Theory)/Minor /OE/GE	10	10	10	40			50	

Assessment Scheme for SEC /VEC/Practical

	Theory CA				Pra	ctical	Total Col (6+7)]	
Course Name (1)	Test I (2)	Test II (3)	Avg (T1+T2)/2 (4)	ESA (5)	CA (6)	ESA (7)	(8)	
Major Practical/SEC/VEC					10	40	50	

Guidelines for Course Assessment:

A. Continuous Assessment (CA) (20% of the Maximum Marks):

This will form 20% of the Maximum Marks and will be carried out throughout the semester. It may be done by conducting **Two Tests** (Test I on 40% curriculum) and **Test II** (remaining 40% syllabus). Average of the marks scored by a student in these two tests of the theory paper will make his **CA** score (col 6).

B. End Semester Assessment (80% of the Maximum Marks):

(For illustration we have considered a paper of 02 credits, 50 marks and need to be modified depending upon credits of an individual paper)

- 1. ESA Question paper will consists of 6 questions, each of 10 marks.
- 2. Students are required to solve a total of 4 Questions.
- 3. Question No.1 will be compulsory and shall be based on entire syllabus.
- 4. Students need to solve **ANY THREE** of the remaining Five Questions (Q.2 to Q.6) and shall be based on entire syllabus.

C. Assessment of Co-Curricular courses (CC):

a. Continuous Assessment (CA) of the CC course shall be done by the respective course coordinator depending on the regularity, performance of a student and his participation in

the international, national, state, university, college level events or camps, wherever applicable.

- b. End Semester Assessment (ESA) shall be done based on the write-up and presentation by the student on the activities that he has carried out throughout the semester.
- c. Students have freedom to take more than one CC courses, however, score of the best performing CES shall be considered for final assessment.
- d. Syllabi, Teaching Scheme and Examination Scheme for the courses in Column 7 and Column 8 (AEC, VEC, IKS, CI, EVS, CCs, etc.) shall be common for all the students from different faculties.
- **Note:** Number of lectures required to cover syllabus of a course depends on the number of credits assigned to a particular course. One credit of theory corresponds to 15 Hours lecturing and for practical course one credit corresponds to 30 Hours. For example, for a course of two credits 30 lectures of one hour duration are assigned, while that for a three credit course 45 lectures.

%%%%%