This question paper contains 2 printed pages]

WT-122-2024

FACULTY OF SCIENCE

M.Sc. (First Year) (Second Semester) EXAMINATION NOVEMBER/DECEMBER, 2024

(CBCS New Pattern)

PHYSICS

Paper PH-202

(Statistical Mechanics)

(Friday, 13-12-2024) Time: 10.00 a.m. to 1.00	p.m.
Time—3 Hours Maximum Marks	-7 5
N.B. := (1) Attempt All questions.	
(2) Each question carries equal marks.	
(3) Figures to the right indicate full marks.	
1. (a) State and explain Liouville's theorem.	7
(b) Derive an expression for Planck radiation formula for energy de	nsity
of a perfectly black body.	8
Or Or	
(c) Explain Brownian motion for the displacement of the particles.	7
(d) State and explain Landau's theory of Liquid He.	8
2. (a) Discuss about phase space, phase trajectory and phase volume.	. 7
(b) Obtain energy and pressure of a slightly degenerate F-D gas.	8
F	Р.Т.О.

WT		(2) WT—122—202	4
		Or Or	
	(c)	Explain the principle of equipartition of energy and derive an expression	n
		for mean energy of a particle per degree of freedom.	7
	(<i>d</i>)	Derive F-D distribution law for the distribution of particles obeying	ιg
		F-D Statistics.	8
3.	(a)	Explain Ising model in one-dimension.	7
	(<i>b</i>)	Explain the phenomenon of B-E condensation using B-E distribution	n
		law at $T < T_O$.	8
		Or A	
	(c)	Derive Clausius-Clapeyron equations of phase transition.	7
	(d)	Calculate entropy of a perfect gas in canonical ensemble.	8
4.	(a)	Distinguish between Microcanonical, Canonical and Grand canonical	al
	<i>y</i>	ensembles.	7
	(b)	What is Gibbs' paradox and how can it be removed?	8
		Or	
	(c)	Derive an expression for the most probable distribution according to B-E statistics.	to 7
	(d)	Show that for a grand canonical ensemble; grand partition function	n
			8
5.	Write	short notes on (any three):	5
	(a)	Virial equation of state and Virial coefficients	
	<i>(b)</i>	Fluctuation of energy in canonical ensemble	
	(c)	Difference between particles obeying M-B, B-E and F-D statistics	
	(d)	Richardson-Dushman equation for thermionic emission.	
	K.		
WT-	-122—	2024 2	