This question paper contains 3 printed pages]

NEPWT-274-2024

FACULTY OF SCIENCE AND TECHNOLOGY

M.Sc. (First Year) (Second Semester) EXAMINATION NOVEMBER/DECEMBER, 2024

CHEMISTRY

(SCHEE-1451)

(Principles of Spectroscopy)

(Wednesday, 18-12-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—60

- N.B. := (i) Question No. 1 is compulsory.
 - (ii) Attempt any three questions from Q. No. 2 to Q. No. 6.
 - (iii) Use of logarithm table and simple non-programmable calculator is allowed.
- 1. Answer the following questions:

15

- (a) Explain the effect of isotopic substitution of rotational spectrum of diatomic molecule.
- (b) Find out the fundamental modes of vibrations for molecules :
 - (i) CO_2
 - (ii) SO₂.
- (c) Explain the energies of atomic orbitals.

P.T.O.

- 2. Answer the following questions:
 - (a) (i) The pure rotational spectrum of gaseous diatomic molecule consists of a series of equally spaced lines separated by 10 cm $^{-1}$. Calculate the bond length of the molecule. The reduced mass of molecule is 1.70×10^{-27} kg.

 $(h = 6.626 \times 10^{-34} \text{ J.s.}, C = 3 \times 10^8 \text{ m/s})$

- (ii) Explain the factors affecting width of spectral line. 8
- (b) Discuss the vibrational spectrum of anharmonic oscillator.
- 3. Attempt the following questions:
 - (a) State and explain Frank-Condon principle.
 - (b) Explain rotational vibrational spectra of diatomic molecule. 7
- 4. Attempt the following questions:
 - (a) (i) The force constant for a diatomic molecule is 860 Nm⁻¹. If the reduced mass of molecule is 1.76×10^{-27} kg, then determine the fundamental vibrational frequency.
 - (ii) Explain principle of IR-spectroscopy. 4
 - (b) Derive equation for the energy of diatomic molecule as rigid rotator.

WT		(3) NEPWT—274—2024
5.	Answe	er the following questions:
	(a)	Explain the electronic spectra of polyatomic molecule.
	(<i>b</i>)	What is Raman effect? Explain pure rotational Raman spectrum. 7
6.	Write	short notes on the following:
	(i)	Koopman theorem

Mutual exclusion principle

Spectra of alkali metal atom.

NEPWT—274—2024

(ii)

(iii)