This question paper contains 3 printed pages]

NEPWT-184-2024

FACULTY OF SCIENCE

M.Sc. (First Year) (First Semester) EXAMINATION NOVEMBER/DECEMBER, 2024

CHEMISTRY

SCHEC-403

(Physical Chemistry)

(Tuesday, 17-12-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

N.B. := (i) Question No. 1 is compulsory.

- (ii) Solve any three questions from Q. No. 2 to Q. No. 6.
- (iii) Use of log table and simple calculator is allowed.

Given:

- (i) $h = 6.626 \times 10^{-34} \text{ Js}$
- (ii) Mass of electron, $m_e = 9.109 \times 10^{-31} \text{ kg}$
- (iii) Velocity of light = $c = 3 \times 10^8 \text{ ms}^{-1}$
- (iv) Gas constant, $R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}$.

P.T.O.

$\chi \chi r$	Г
vv	

NEPWT—184—2024

1. Solve the following:

20

- (a) What is Russel-Sander's coupling? Determine the ground state term symbol for p^4 and d^5 configurations.
- (b) Calculate the ionic strength of 0.20 molal Na₂SO₄ solution and 0.125 molal AlCl₃ solution.
- (c) Explain Debye-Huckel theory of strong electrolytes.
- (d) Explain N and P-type semiconductors. What is the effect of temperature on them?
- 2. Attempt the following:

20

- (a) Derive an equation for energy of particle in 1-D box. Calculate the energies in eV of an electron moving in an infinite 1-D box of width 1 A° and show them in a suitable energy level diagram.
- (b) Derive Lipmann equation for surface excess phenomenon.
- 3. Attempt the following:

20

(a) (i) State Onsagar equation applicable to strong electrolytes. Explain its verification and the need of Onsager equation to explain behaviour of strong electrolytes.

3

NEPWT—184—2024