This question paper contains 3 printed pages]

NEPWT—165—2024

FACULTY OF SCIENCE

M.Sc. (First Year) (Second Semester) EXAMINATION NOVEMBER/DECEMBER, 2024

CHEMISTRY

Paper SCHEC-453

(Physical Chemistry—II)

(Monday, 16-12-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- N.B. := (1) Question No. 1 is compulsory.
 - (2) Solve any three questions from Q. No. 2 to Q. No. 6.
 - (3) Use of log table and calculator is allowed.
 - (4) Figures to the right indicate full marks.
- 1. Solve the following:

20

- (a) What is Micellisation? Explain thermodynamics of micellisation.
- (b) A protein sample has an equimolar mixture of heamoglobin ($M_1 = 15.5$ kg mol⁻¹), ribonuclease ($M_2 = 13.7$ kg mol⁻¹) and myoglobin ($M_3 = 17.2$ kg mol⁻¹). Calculate M_N^- and M_M^- . Which is greater?
- (c) Derive the Ilkovic equation of diffusion current in polarographic cell.
- (d) What are fast reactions? Explain:
 - (i) Flash photolysis, and
 - (ii) NMR method.

P.T.O.

WT		(2) NEPWT—165—2024
2.	Solve	the following:
	(a)	Derive BET equation of multilayer adsorption and state its importance.
	(<i>b</i>)	What is overpotential? Explain in detail:
		(i) Hydrogen over-voltage, and
		(ii) Oxygen overpotential.
3.	Solve	the following:
	(a)	What are:
		(i) isotactic
		(ii) atactic, and
		(iii) syndiotactic polymer ?
		Explain Osmometry method of determination of molar masses of
		polymers.
	(b)	What are oscillatory reactions? The half-life for the radioactive decay
		of ¹⁴ C is 5730 years. An archaeological artifact containing wood had
		only 80% of the $^{14}\mathrm{C}$ found in living tree. Estimate the age of the sample.
4.	Atten	apt the following:
	(a)	The intrinsic viscosity of a solution of polyisobutylene at 20°C is 1.80
		decilitre per gram and molecular weight is 6.0×10^5 gm per mole.
		Determine constant k if $a = 0.64$.
	(b)	Write an account on surface films on liquids and catalytic activity at
		surfaces.

$W\Gamma$ (3)	NEPWT—165—202
---------------	---------------

5. Solve the following:

20

- (a) What is basic principle of Polarography? Explain half-wave potential and any *three* applications of polarography.
- (b) Describe the kinetics of a reaction, decomposition of Ethane.
- 6. Write short notes on the following:

20

- (a) Surface active agents and its classification
- (b) Butler-Volmer equation and its significance
- (c) Michaelis-Menten equation and its importance in enzyme catalysis
- (d) (i) Polymers and macromolecules
 - (ii) Liquid crystal polymers.