This question paper contains 2 printed pages]

NEPWT-127-2024

FACULTY OF SCIENCE AND TECHNOLOGY

M.Sc. (First Year) (First Semester) EXAMINATION NOVEMBER/DECEMBER, 2024

(NEP-2020 Pattern)

PHYSICS

SPHYC-402

(Classical Mechanics)

(Saturday, 14-12-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Question No. 1 is compulsory.
 - (iii) Solve any three of the remaining questions (Q. No. 2 to Q. No. 6).
 - (iv) Figures to the right indicate full marks.
- 1. Solve the following questions (Each question carries 5 marks): 20
 - (a) Explain conservative and non-conservative forces.
 - (b) Write Gauge transformation for Lagrangian.
 - (c) What is Poisson's Brackets? Write its properties.
 - (d) What is stable and unstable equilibriams?

P.T.O.

VV I		(2) NEPW1—121—2024
2.	Solve	the following questions (Each question carries 10 marks): 20
	(a)	Explain in detail Galilean Transformations.
	(<i>b</i>)	What is Cyclic-Coordinates and degree of freedom?
3.	Solve	the following questions (Each question carries 10 marks): 20
	(a)	Derive Lagrangian equation of motion from D'Alembert's principle.
	(b)	Derive Lagrangian equation from variational principle.
4.	Solve	the following questions (Each question carries 10 marks): 20
	(a)	Explain Derivation of Hamiltonian equations of motion from Hamiltonian
		principle.
	(b)	Explain reduction of two body problem in one body problem.
5	Solve	the following questions (Each question carries 10 marks): 20
	(a)	Derive Euler's equation of motion for a rigid body.
	<i>(b)</i>	What are normal coordinates? Also explain normal modes and normal
		frequencies of vibrations.
6.	Write	short notes on (Each question carries 5 marks): 20
	(a)	D'Alembert's principle
	(b)	Jacobi Integral
	(c)	Poisson Brackets
	(d)	Rotational K.E. of a body.