This question paper contains 2 printed pages]

NEPWT-79-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (Second Year) (Third Semester) EXAMINATION **NOVEMBER/DECEMBER, 2024**

PHYSICS

SPHYC-502

(Nuclear and Particle Physics)

(Thursday, 12-12-2024) Time: 2.00 p.m. to 5.00 p.m.					
Time	е—3 Н	Hours	Maximum Marks—80		
N.B.	:	(1) Q. No. 1 is compulsory.			
	((2) Attempt any three questions from Q. Nos.	2 to 6.		
	((3) All questions carry equal marks.			
	40	(4) Symbols have their usual meaning in the	subject.		
1.	Solve	e the following questions:	20		
	(a)	Explain mirror nuclei with suitable examples.			
	(b)	Describe Semiconductor detector.			
	(c)	Explain Bohr-Wheeler theory of fission process	ş.		
	(d)	Explain proton-proton cycle.			
2.	(a)	Discuss of electric quadrupole moment of the r	nucleus. 10		
	(b)	Discuss the semi-empirical mass formula for a new	ucleus and explain the		
		different terms in it.	10		

10

P.T.O.

WT		(2) NEPWT—79—2	2024		
3.	(a)	Derive the expression for the stopping power of heavy charged particles	s. 10		
	(<i>b</i>)	Explain classification of elementary particles in detail.	10		
4.	(a)	Write down the shell model configuration and assign for spin and partie			
		to ground state of the nuclei : $_{28}\mathrm{Fe^{57}},\ _{30}\mathrm{Zn^{67}},\ _{21}\mathrm{Sc^{41}}.$	10		
	(<i>b</i>)	Explain the characteristics on Nuclear forces.	10		
5.	(a)	Discuss law of successive transformation in detail.	10		
	(b)	Discuss the C-N cycle.	10		
6.	Write	short notes on the following:	20		
	(a)	Average binding energy			
	(<i>b</i>)	Quark theory			
	(c)	Spin orbital coupling			
	(4)	Noutring hypothesis			