This question paper contains 5 printed pages]

NEPWT—21—2024

FACULTY OF SCIENCE

M.Sc. (Second Year) (Third Semester) EXAMINATION NOVEMBER/DECEMBER, 2024

ORGANIC CHEMISTRY

SCHECT-1501

(Advanced Spectroscopic Methods)

(Tuesday, 10-12-2024) Time: 2.00 p.m. to 5.00 p.m.

Time—3 Hours

Maximum Marks—80

N.B. := (1) First question is compulsory.

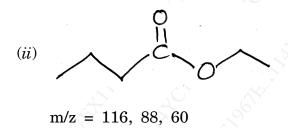
- (2) Solve any three questions from remaining five.
- 1. Solve the following:

20

- (a) Explain, why conjugated diene absorb at longer wavelength, whereas nonconjugated diene absorb at shorter wavelength in U.V. spectroscopy.
- (b) Why TMS solvent is used as standard reference in NMR spectroscopy?
- (c) Explain the metastable ion peak and its application in the spectroscopy.
- (d) Calculate the fundamental modes of vibrations in the following:
 - (i) H_2S
 - (ii) C_2H_2 .

P.T.O.

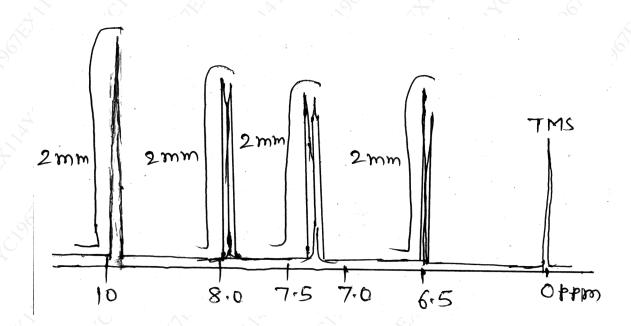
2. Answer the following:


20

(a) Calculate the λ_{\max} of the following compounds :

(b) Explain the genesis of the following compounds:

$$CH_2-I$$


m/z = 218, 91, 65, 39.

3. Solve the following:

20

(a) Compound having M.F. $C_5H_4O_2$ shows the following NMR spectrum, deduce its structure :

(b) An organic compound with molecular mass 174, having M.F. $\rm C_8H_{14}O_4$ exhibits following spectral data :

UV:213 nm \in_{max} : 60

P.T.O.

WT

(4)

NEPWT—21—2024

 $IR:(cm^{-1})$ 2941 - 2857, 1745, 1458.

NMR : (δppm) :

- (i) 4.14, q, 4H, J = 7.2 CPS.
- (ii) 2.6, s, 4H
- (iii) 1.27, t, 6H, J = 7.2 CPS

Deduce the structure of compound.

4. Answer the following:

20

- (a) Solve the following:
 - (i) Differentiate the following by using IR:

- (ii) Write a note on fingerprint region.
- (b) An organic compound having M.F. $C_4H_8OBr_2$ exhibits the following spectral data, deduce the structure of compound :

 $IR (cm^{-1}) : 3000 - 2900, 1425, 1279, 1117.$

PMR (δ, ppm) : 3.75, t, 4H, 3.40, t, 4H

 $Mass: 234\ (M+4),\ 232\ (M+2),\ 230\ (M+),\ 139,\ 137,\ 109,\ 107,\ 95,\ 93.$

5. Answer the following:

20

- (a) Solve the following:
 - (i) Explain deshielding of proton in benzene and shielding effect in acetylene.
 - (ii) How will you distinguish the following compounds by using offresonance decoupled ¹³C-NMR:

$$\begin{array}{c|cccc} \mathrm{CH_3} & \mathrm{CH_3} \\ & & | \\ \mathrm{CH_3} - \mathrm{C} - \mathrm{OH} \ \ \mathrm{and} \ \ \mathrm{CH_3} - \mathrm{CH} - \mathrm{CH_2} - \mathrm{OH} \\ & | \\ \mathrm{CH_3} \end{array}$$

(b) A compound with M.F. $C_{10}H_{12}O_2$ displays the following spectral data :

IR IR (cm^{-1}) : 1690, 1600, 1580, 1490, 770, 690.

PMR (δ, PPM) : 1.3, d, 6H

5.3, septet, 1H

$$7.3 - 7.7$$
, m, $5H$

 13 C-NMR : (δ) : 22 (q), 68 (d), 128 (d), 129 (d), 131 (s), 135 (d), 175 (s).

6. Write short notes on:

20

- (a) McLafferty rearrangement
- (b) Spin-spin coupling in PMR
- (c) Chemical shift in PMR
- (d) Electronic effect on absorption frequency of carbonyls.

NEPWT-21-2024

5