This question paper contains 3 printed pages]

## VA-80-2024

## FACULTY OF SCIENCE AND TECHNOLOGY

## B.Sc. (Third Year) (Fifth Semester) EXAMINATION NOVEMBER/DECEMBER, 2024

(CBCS/New Pattern)

**MATHEMATICS** 

Paper XIV

(Numerical Analysis)

(Friday, 13-12-2024)

Time: 10.00 a.m. to 12.00 noon

Time—Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
  - (ii) Figures to the right indicate full marks.
  - (iii) Use of non-scientific/non-programmable calculator is allowed.
- 1. Derive the Newton-Gregory formula for backward interpolation and estimate the population for the year 1975 from the following data:

| Year x | Population y |
|--------|--------------|
|        | (in lakhs)   |
| 1941   | 46           |
| 1951   | 67           |
| 1961   | 83           |
| 1971   | 95           |
| 1981   | 102          |

P.T.O.

| WΓ | × × ( | 2 ) |  | VA80 | 0-2024 |
|----|-------|-----|--|------|--------|
|    |       |     |  |      |        |
|    |       | Or  |  |      |        |

(a) Prove that the *n*th divided differences of a polynomial of the *n*th degree are constant.

(b) Given  $\log_{10} 654 = 2.8156$ ,  $\log_{10} 658 = 2.8182$ ,  $\log_{10} 659 = 2.8189$ ,  $\log_{10} 661 = 2.8202$ , find  $\log_{10} 656$ .

2. Derive the Gauss's central difference forward interpolation formula for equal intervals and hence find the value of y when x = 3.75 from the following table:

| x   |      | $y_x$  |
|-----|------|--------|
| 2.5 |      | 24.145 |
| 3.0 |      | 22.043 |
| 3.5 |      | 20.225 |
| 4.0 |      | 18.644 |
| 4.5 |      | 17.262 |
| 5.0 |      | 16.047 |
|     | Or A |        |

- (a) Explain Euler's modified method for the solution of equations of first order.
- (b) Apply Simpson's rule to estimate the value of the integral  $\int_{1}^{2} \frac{dx}{x}$ , by dividing the interval (1, 2) into 4 equal parts.

| ( 0 ) | WT | ( | (3.) |  | VA—80—2 | 2024 |
|-------|----|---|------|--|---------|------|
|-------|----|---|------|--|---------|------|

3. Attempt any two of the following:

5 each

- (i) Evaluate:  $\frac{\Delta^2 x^3}{Ex^2}$ , interval of differencing being n.
- (ii) Find the third divided difference with arguments 2, 4, 9, 10 of the function  $f(x) = x^3 2x$ .
- (iii) Prove that:

$$\sqrt{1+\delta^2\mu^2}=1+\frac{1}{2}\delta^2\,.$$

(iv) Calculate by Trapezoidal rule an approximate value of  $\int_{-3}^{+3} x^4 dx$ , by taking seven equidistant ordinates.