This question paper contains 3 printed pages]

VA-76-2024

FACULTY OF SCIENCE

B.Sc. (First Year) (Second Semester) EXAMINATION NOVEMBER/DECEMBER, 2024

(New Course)

MATHEMATICS

Paper-IV

(Geometry)

(Friday, 13-12-2024)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. If l, m, n are the direction cosines of a line, then show that :

$$l^2 + m^2 + n^2 = 1.$$

Also, if 6, 2, 3 are direction ratios of a line, then find the direction cosines of that line.

Or

(a) Find the equation of a plane in terms of the intercepts a, b, c which it makes on the axes.

P.T.O.

- (b) Find the equation of the plane which passes through (2, 2, 1), (9, 3, 6) and is perpendicular to the plane 2x + 6y + 6z = 9.
- 2. Find the length of perpendicular from a given point $p(x_1, y_1, z_1)$ to a given line :

$$\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$$

Also, find the length of the perpendicular from the point (4, -5, 3) to the line

$$\frac{x-5}{3} = \frac{y+2}{-4} = \frac{z-6}{5}$$

Or

- (a) Show that a plane section of a sphere is a circle.
- (b) Find the equation of sphere through the circle $x^2 + y^2 + z^2 = 9$; 2x + 3y + 4z = 5 and the point (1, 2, 3).
- 3. Attempt any two of the following:
 - (a) Find the center and radii of the sphere:

$$x^2 + y^2 + z^2 + 2x - 4y - 6z + 5 = 0$$

(b) Find the angle between the line:

$$\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$$

and the plane

$$ax + by + cz + d = 0.$$

WT (3) VA—76—2024

(c) Find the angle between the pair of planes:

$$2x - y + z = 6$$
; $x + y + 2z = 7$

(d) If α , β , γ be the angles which a line makes with the positive direction of the axes, prove that :

$$\sin^2\!\alpha + \sin^2\!\beta + \sin^2\!\gamma = 2.$$

VA-76-2024