This question paper contains 2 printed pages]

VA-57-2024

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Sixth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2024

(CBCS/New Pattern)

MATHEMATICS

Paper-XVII

(Mechanics-II)

(Tuesday, 10-12-2024)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Find the tangential and normal components of velocity and acceleration. 15

Or

(a) Discuss the conservation of Linear momentum.

- 8
- (b) A particle of mass m moving with velocity \overline{v} picks up a mass m at rest. Find the velocity of the combined mass, the kinetic energy of the combined mass and the loss in K.E.
- 2. Discuss the motion of a projectile and derive an equation of its trajectory. 15

P.T.O.

Or

(a) Prove the necessary and sufficient condition for a force F to be conservative is that the line integral over a closed path C in a conservative field is zero that is:

$$\int_{\mathbf{C}} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{r} = \mathbf{0}.$$

- (b) Prove that in a conservative field of force, the sum of kinetic energy and potential energy of a particle at every point is constant.
- 3. Attempt any *two* of the following:

10

- (i) Prove that the acceleration of a point moving in a plane curve with uniform speed is $\rho \Psi^2$
- (ii) Prove that the sum of the work done by any number of force is equal to the work done by their resultant
- (iii) Show that the velocity of a particle increases from $\overset{
 ightharpoonup}{v_1}$ to $\overset{
 ightharpoonup}{v_2}$, then the gain in the K.E. is half the scalar product of impulse and the sum of $\overset{
 ightharpoonup}{v_1}$ and $\overset{
 ightharpoonup}{v_2}$
- (iv) A man can throw a cricket ball upto 160 metres and no more. With what speed, in metre per sec, must it be thrown?

 Take g = 980 cm/sec².