This question paper contains 3 printed pages]

VA-56-2024

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. (Third Year) (Sixth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2024

(CBCS/New Pattern)

MATHEMATICS

Paper XVII-A

(Topology)

(Tuesday, 10-12-2024)

Time: 10.00 a.m. to 12.00 noon

Time—Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) All symbols carry their usual meanings.
 - (iv) Attempt either A or B for question 1 and 2.
- 1. (A) Attempt the following:
 - (i) Define discrete topology. If X is any set, show that the collection of all one-point subsets of X is a basis for the discrete topology on X.
 - (ii) Let X be a set, let β be a basis for a topology λ on X. Then prove that λ equals the collection of all unions of elements of β .

P.T.O.

Or

- (b) Attempt the following:
 - (i) Define the product topology on $X \times Y$. If β is a basis for the topology of X and C is a basis for the topology of Y, then show that the collection:

$$D = \{\beta \times c : \beta \in \beta \text{ and } c \in \mathbb{C}\}$$

is a basis for the topology of $X \times Y$.

(ii) Let X be an ordered set in the order topology; let Y be a subset of X that is convex in X. Then prove that the order topology on Y is the same as the topology Y inherits as a subspace of X.

- 2. (a) Attempt the following:
 - (i) Let Y be a subspace of X. Then show that a set A is closed in Y iff it equals the intersection of a closed set of X with Y. 7
 - (ii) Define Hausdorff space. Hence show that the product of two Hausdorff spaces is a Hausdorff space. 8

Or

- (b) Attempt the following:
 - (i) Let $f: A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$. Then prove that f is continuous if and only if the functions $f_1: A \to X$ and $f_2: A \to Y$ are continuous.
 - (ii) If the sets C and D form a separation of X and if Y is a connected subspace of X, then show that Y lies entirely within either C or D.

WT (3)	VA—56-	-2024
----------	--------	-------

- 3. Attempt any two of the following:
 - (i) Provide any five topologies on the set $X = \{a, b, c\}$ which are distinct.

5 each

(ii) Show that the collection:

$$S = \{\pi_1^{\text{-}1}(U) \, / \, U \text{ open in } X\} \, \, U \, \{\pi_2^{\text{-}1}(V) \, / \, V \text{ is open in } Y\}$$

is a subbasis for the product topology on $X \times Y$.

- (iii) Let X be a topological space, then prove that finite union of closed sets are closed.
- (iv) Show that the interval (0, 1] is not compact.