This question paper contains 2 printed pages]

VA-35-2024

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2024

(CBCS/New Pattern)
PHYSICS

Paper-XIII

(Solid State Physics)

(Friday, 6-12-2024)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. : Attempt all questions.

Describe the formation of metallic and covalent bond. Also write down their physical properties.

Or

- (a) Explain the assumptions of classical theory of Lattice Heat Capacity and derive equation for specific heat.
- (b) Considering the following expression for specific heat from Einstein's

theory :
$$C_v = 3 \text{ NK}_B \left(\frac{\hbar w_0}{\text{K}_B T} \right) \frac{e^{\frac{\hbar w_0}{\text{KT}}}}{\left(e^{\frac{\hbar w_0}{\text{KT}-1}} \right)^2}$$
.

Derive expressions for the behaviour of specific heat of high and low temperature.

P.T.O.

WT	A(2)	VA-35-2024

2. Derive an expression for the energy of electron, i.e. $E_n = \frac{n^2h^2}{8mL^2}$ by using Sommerfield model.

Or

- (a) Determine packing factor of HCP crystal.
- (b) Describe rotation symmetry operation.
- 3. Write notes on any two:
 - (i) Rotating crystal method
 - (ii) Point group and space group
 - (iii) Limitations of Debye model
 - (iv) Outstanding properties of metals.