This question paper contains 2 printed pages]

VA-29-2024

FACULTY OF SCIENCE

B.Sc. (Second Year) (Third Semester) EXAMINATION NOVEMBER/DECEMBER, 2024

(New Pattern)

PHYSICS

Paper-VI

(Waves and Oscillation)

(Thursday, 5-12-2024)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B. := (i) Attempt all questions.

- (ii) Illustrate your answers with suitably well labelled diagram, wherever necessary.
- Derive an expression for analytically treatment of stationary wave in an open
 end organe pipe.

Or

- (a) Derive an expression of energy of plane progressive wave. 8
- (b) Derive the relation between wave velocity and particle velocity. 7

P.T.O.

WT		(2) VA—29—2024	
2.	Define damped vibration. Derive differential equation for damped harmonic		
	motion	n. 15	
		Or A	
	(a)	Explain piezoelectric oscillator for the production of ultrasonic waves.	
	(<i>b</i>)	Explain the term detection of ultrasonic waves.	
3.	Attempt any two of the following:		
	(a)	Derive the differential equation of wave motion.	
	(b)	Derive an investigation of pressure and density changes at Node and	
		Antinode 5	
	(c)	State the conditions for good acoustical design of an auditorium 5	
	(d)	Explain sharpness of Resonance.	