This question paper contains 2 printed pages]

VA—18—2024

FACULTY OF SCIENCE

B.Sc. (Third Year) (Sixth Semester) EXAMINATION NOVEMBER/DECEMBER, 2024

(CBCS/New Pattern)

PHYSICS

Paper-XV

(Fibre Optic Communication)

(Tuesday, 3-12-2024)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Use of non-programmable calculator and log table is allowed.
- 1. Describe in detail:

15

- (i) Snell's law
- (ii) Total internal reflection.

Or

(a) Describe in brief modes in graded index fibre.

8

A graded index fibre has a core with a parabolic refractive index profile which has a diameter of 50 μm . The fibre has a numerical aperture of 0.2. Estimate the total number of guided modes propagating on the fibre when it is operating at a wavelength of 1 μm .

P.T.O.

WT		(2) VA—18—2024
VV I		(2) VA—18—2024
	(<i>b</i>)	Write down expressions for index variation of graded index fibre.
		Describe the ray transmission in the graded index fibres. 7
2.	Descri	ibe with the aid of simple ray diagrams:
	(i)	The multimode step index fibre
	(ii)	The single mode step index fibre and compare the advantages and
		disadvantages of these two fibres for use as an optical channel.
		Or ST AND ST
	(a)	Derive an expression for the cut-off wavelength.
	(<i>b</i>)	Estimate the maximum core diameter for an optical fibre with relative
		refractive index difference (1.5%) and core refractive index (1.48) which
		is operating at wavelength of 0.85 μm . Further estimate the new
		maximum core diameter for single mode operation when the relative
		refractive index difference is reduced by a factor of 10.
3.	Write	notes on any two:
	(a)	Advantages of single mode fibre
	(b)	Intermodal dispersion in the multimode graded index fibre.

(c)

(d)

Acceptance angle

Normalized frequency.