This question paper contains 3 printed pages]

VA-01-2024

FACULTY OF SCIENCE

B.Sc. (Third Year) (Sixth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2024

(CBCS/New Pattern)

CHEMISTRY

Paper-XIV

(Organic and Inorganic Chemistry)

(Tuesday, 26-11-2024)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Answer any three of the following:

 $3 \times 5 = 15$

- (a) What are the limitations of valence bond theory?
- (b) Explain the following factors affecting the magnitude of crystal field splitting:
 - (i) Nature of ligand
 - (ii) Size of d-orbital.
- (c) Explain spilitting of d-orbitals in octaheadral complexes.

P.T.O.

- (d) Calculate the spectroscopic ground state term symbol for d^3 and d^5 configuration.
- (e) Write different types of electronic transition involved in metal complex.
- 2. Answer any three of the following:

 $3\times5=15$

- (a) Define and explain:
 - (i) Chromophore
 - (ii) Auxochrome.
- (b) Explain shielding and deshielding effect with suitable example.
- (c) Define copolymer. Explain free radical addition polymerization reaction with mechanism.
- (d) Explain Steven's rearrangement with mechanism.
- (e) An organic compound with molecular formula C_2H_7N gave the following spectral data :

 $UV: Transparent above \lambda_{max} 210 \ nm$

 $IR: 3530, 2975 \text{ cm}^{-1}$

PMR (SPPM) : $\delta 1.0 (t, 3H, J = 6 Hz)$

: $\delta 2.5 (9, 2H, J = 6 Hz)$

: δ 2.0 (5, 2H)

Deduce the structure of compound.

3. Answer any two of the following:

 $2 \times 5 = 10$

- (a) Define Scissoring and Rocking vibrations. Calculate λ_{max} of :
 - (i)
 - (ii)
- (b) Give the advantages of $TM_{5.}$
- (c) Give synthesis and uses of:
 - (i) Nylon 6, 10
 - (ii) Polyurethanes
- (d) Deduce the structure of compound based on the following PMR spectral data:

Molecular formula: C₈H₈O

PMR (δ_{ppm}) : $\delta 2.33 (5, 3H)$

δ 7.1 (m, 5H)