This question paper contains 2 printed pages]

PA-78-2024

FACULTY OF SCIENCE

B.Sc. (Fifth Semester) EXAMINATION

APRIL/MAY, 2024

(CBCS/New Pattern)

MATHEMATICS

Paper XIV

(Operation Research)

(Tuesdday, 23-04-2024)

Time: 10.00 a.m. to 12.00 noon

Time—Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Explain the *four* basic assuptions necessary for all linear programming problem.

Or

- (a) Define standard form and prove that the set of feasible solution to an L.P.P is a convex set.
- (b) Use the graphical method to solve the following LPP: Maximize: $Z = 2x_1 + 3x_2$ Subject to the constraints:

$$x_1 + x_2 \le 30$$
, $x_1 - x_2 \ge 0$, $x_2 \ge 3$,

$$0 \le x \le 20$$
 and $0 \le x_2 \le 12$.

2. Explain simplex algorithm for the solution of L.P.P. and find the maximum value of $Z = 107x_1 + x_2 + 2x_3$ Subject to the constraints:

$$14x_1 + x_2 - 6x_3 + 3x_4 = 7$$

$$16x_1 + x_2 - 6x_3 \le 5$$

$$3x_1 - x_2 - x_3 \le 0;$$

$$x_1, x_2, x_3, x_4 \ge 0.$$

P.T.O.

7

Or

- (a) Explain Hungarian Assignment Method.
- (b) Write existence of an optimum solution and prove that the number of basic (decision) variables of the general transportation problem at any stage of feasible solution must be m + n 1.
- 3. Attempt any *two* of the following:
 - (a) State the major steps for mathematical formulation of linear programming problem. 5
 - (b) Use graphical method to solve the L.P.P.

 $Maximum Z = 2x_1 + 4x_2$

Subject to the constraints:

$$x_1 + 2x_2 \le 5$$
, $x_1 + x_2 \le 4$ and $x_1, x_2 \ge 0$

- (c) Prove that any convex combination of k different optimum solutions to an LPP is again an optimum solution to the problem. 5
- (d) Explain Simplex Method for solution method for Assignment problem. 5