This question paper contains 3 printed pages]

PA-68-2024

FACULTY OF SCIENCE & ARTS

B.A./B.Sc. (Second Year) (Fourth Semester) EXAMINATION APRIL/MAY, 2024

(New Course)

MATHEMATICS

Paper-IX

(Real Analysis-II)

Saturday, 20-04-2024)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B. := (1) Attempt *all* questions.
 - (2) Figures to the right indicate full marks.
- 1. Prove that a necessary and sufficient condition for the integrability of a bounded function f is that to every $\epsilon > 0$, there corresponds $\delta > 0$ such that for every partition P of [a, b] with norm $\mu(P) < \delta$:

$$U(P, f) - L(P, f) < \epsilon$$

$$Or$$

Prove that a function f is integrable over [a, b] iff there is a number I lying between L(P, f) & U(P, f) such that for any $\epsilon > 0$, \exists a partition P of [a, b] such that :

$$|\mathrm{U}(\mathrm{P}, f) - \mathrm{I}| < \epsilon$$
 and $|\mathrm{I} - \mathrm{L}(\mathrm{P}, f)| < \epsilon$

(b) Prove that every integrable continuous function is integrable. 7
P.T.O.

- 2. If f and g be two positive function such that $f(x) \le g(x)$, for all x in [a, b] then:
 - (i) $\int_{a}^{b} f dx$ converges if $\int_{a}^{b} g dx$ converges.
 - (ii) $\int_a^b g \, dx$ diverges, and if $\int_a^b f dx$ diverges and also test the convergenic of $\int_0^1 \frac{dx}{\sqrt{1-x^3}}$.

Or

- If f and g are positive in [a, x] and $\lim_{x \to \infty} \frac{f}{g} = l$, where l is a non-zero finite number, then two integral $\int_a^\infty f \, dx$ and $\int_a^\infty g \, dx$ converge or diverge together. Also if $f/g \to 0$ and $\int_a^\infty g \, dx$ converges then prove that $\int_a^\infty f \, dx$ converges and if $f/g \to \infty$ and $\int_a^\infty g \, dx$ diverges, then $\int_a^\infty f \, dx$ diverges. 8
- (b) If ϕ is bounded of monotonic in $[a, \infty]$ and $\int_a^\infty f \, dx$ is convergent at ∞ , then prove that $\int_a^\infty f \, \phi \, dx$ is convergent at ∞ .

- 3. Atempt any two:
 - (a) Show that x^2 is integrable on any interval [0, k].
 - (b) Compute $\int_{-1}^{1} f dx$, where f(x) = |x|.
 - (c) Examine the convergence of $\int_0^1 \frac{dx}{x^2}$.
 - (d) Show that $\int_{1}^{\infty} \frac{\sin x}{\rho} dx$ converges absolutely if P > 1.