This question paper contains 2 printed pages]

PA-63-2024

FACULTY OF ARTS/SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION APRIL/MAY, 2024

(CBCS/New Pattern)

MATHEMATICS

Paper XIII

(Linear Algebra)

(Saturday, 20-4-2024)

Time: 10.00 a.m. to 12.00 noon

Time—Two Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. State and prove the Rank-Nullity Theorem.

15

Or

- (a) Let U and W be two subspaces of a vector space V and Z = U + W then prove that $Z = U \oplus W$ iff for any vector $z \in Z$ can be expressed uniquely as the sum z = u + w, $u \in U$, $w \in W$.
- (b) In a vector space V suppose $\{v_1, v_2,, v_n\}$ is an ordered set of vectors with $v_1 \neq 0$. The set is L.D. iff one of the vectors $v_2, v_3,, v_n$ say v_k belongs to the span of $v_1, v_2,, v_k$, i.e. $v_k \in [v_1, v_2,, v_{k-1}]$.
- 2. Let V be an inner product space then for arbitrary vectors u and v in V and scalars α , prove that :
 - (i) $\|\alpha u\| = \|\alpha\| \|u\|$
 - $(ii) ||u.v|| \le ||u|| . ||v||$
 - (iii) $||u+v|| \le ||u|| + ||v||$.

P.T.O.

Or

- (a) Every real vector space of dimension p is isomorphic to V_p .
- (b) Let $T:U\to V$ and $S:U\to V$ be two linear transformations, then show that the mappings $M:U\to V$ defined by M(u)=S(u)+T(u) and $P:U\to V$ defined by $P(u)=\alpha(S(u))\ \forall\ u\in U$ are linear.
- 3. Attempt any two of the following:

5 marks each

- (a) If U and W be two subspaces of a vector space V, then prove that their intersection $U \cap W$ is also a subspace of V.
- (b) Let $T: U \to V$ be a linear map, then prove that :
 - (i) $T(O_U) = O_V$
 - (ii) T(-u) = -T(u).
- (c) Let $T: P_2 \to V_3$ defined by :

$$\mathbf{T}(\alpha_0+\alpha_1x+\alpha_2x^2)=(\alpha_0,\,\alpha_1,\,\alpha_2)\,.$$

Show that T is linear and non-singular.

(d) Let

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Find the eigenvalues of A.