This question paper contains 3 printed pages]

PA-50-2024

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Third Year) (Fifth Semester) EXAMINATION

APRIL/MAY, 2024

(CBCS/New Pattern)

MATHEMATICS

Paper-XII

(Metric Spaces)

(Thursday, 18-04-2024)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) Attempt all questions
 - (ii) Figures to the right indicate full marks.
- 1. Prove that every compact subset F, of a metric space (X, d), is closed. 15

Or

(a) Let (X, d) be any metric space. Prove that a subset F, of X, is closed if and only if it's complement in X is open.

P.T.O.

WΓ	(2)	PA-50-2024
• • =		

- (b) Show that the function $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by d(x, y) = |x y|; for all $x, y \in \mathbb{R}$ is a metric on the set \mathbb{R} of all real numbers.
- 2. Let Y be a subset of a metric space (X, d), then prove that the following are equivalent:
 - (i) Y is connected
 - (ii) Y cannot be expressed as disjoint union of two non-empty closed sets in Y.

Or

- Let (X, d) be a complete metric space and Y be a subspace of X, then prove that Y is complete if any only if it is closed in (X, d).
- (b) Let (X, d_1) and (Y, d_2) be two metric spaces. Show that $f: X \to Y$ is continuous if and only if $F(\overline{A}) \subseteq \overline{F(A)}$, for every $A \subseteq X$.
- 3. Attempt any two of the following: 5 each
 - (a) Let (X, d) be any metric space. Show that the function d_1 defined by $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}.$

For all $x, y \in X$ is a metric on X.

2 P.T.O.

- (b) Prove that every compact subset A, of a metric space (X, d), is bounded.
- (c) Prove that every convergent sequence is a Cauchy sequence.
- (d) Discuss the connectedness of the subset:

$$D = \left\{ (x, y) | x \neq 0, y = \sin\left(\frac{1}{x}\right) \right\}$$

of the Euclidean space \mathbb{R}^2 .