This question paper contains 2 printed pages]

NEPRT-132-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (Second Semester) EXAMINATION

APRIL/MAY, 2024

PHYSICS

Paper SPHYC-452

(Statistical Mechanics)

(Saturday, 20-04-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks—80

- Note := (i) Question No. 1 is compulsory.
 - (ii) Each question carries equal marks.
 - (iii) Figures to the right indicate full marks
 - (iv) Solve any three of the remaining five questions Q. No. 2 to Q. No. 6.
- 1. Solve the following questions (each question 5 marks): 20
 - (i) Calculate entropy of a perfect gas in microcanonical ensemble.
 - (ii) Photoelectric emission.
 - (iii) Phonon statistics
 - (iv) Virial equation of state.

P.T.O.

W		(2) NEPRT—132—20)24
2.	(a)	Define ensemble and ensemble average. Distinguish between	en
		microcanonical, canonical and grand canonical ensembles.	10
	(b)	Derive an expression for M-B distribution law for velocity of particle.	10
3.	(a)	Derive F-D distribution law for the distribution of particle obey	ing
		F-D statistics.	10
	(b)	Obtain energy and pressure of a weakly degenerate Fermi gas.	10
4.	(a)	State and explain in detail about Landau's theory of liquid He.	10
	(b)	Explain the phenomenon of B-E condensation using B-E distribut	ion
		law at $T < T_0$.	10
5.	(a)	Discuss Ising model in one and two dimensions.	10
	(b)	Derive the Fokker-Plank equation.	10
6.	Write	short notes on:	20
	(i)	Free electron model	
	(ii)	λ -transition in liquid Helium	
	(iii)	Brownian motion	
	(iv)	Gibbs' Paradox.	