This question paper contains 3 printed pages]

NEPRT-111-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (Second Semester) EXAMINATION

NOVEMBER/DECEMBER, 2024

PHYSICS

Paper-SPHYC-451

(Quantum Mechanics)

(Thursday, 18-04-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Q. No. 1 is compulsory.
 - (iii) Solve any three of the remaining five questions (Q. No. 2 to Q. No. 6)
 - (iv) Figures to the right indicate full marks.
- 1. Solve the following questions (each question carries 5 marks): 20
 - (a) Explain the physical significance of wave function.
 - (b) Show that:
 - $(i) \qquad \sigma_x \sigma_y = l \sigma_z$
 - $(ii) \qquad [\mathrm{L}^2, \ \mathrm{L}_x) \, = \, 0.$

P.T.O.

W.I.		(2) NEPRT—111—2024
	(c)	Explain sudden approximation with reference to time dependent
		perturbation theory.
	(d)	Define differential and total scattering cross-section.
2.	Solve	the following questions (Each question carries 10 marks):
	(a)	State the fundamental postulates of quantum mechanics and explain
		in detail.
	<i>(b)</i>	Derive an expression for the time independent Schrodinger's wave
		equation. 10
3.	Solve	the following questions (Each question carries 10 marks):
	(a)	What are Ladder operators? Deduce the matrix elements of these ladder
		operators.
	(<i>b</i>)	Explain the concept of eigen values and find out the eigen values o
		${\sf J}^2$ and ${\sf J}_z$ operators.
4.	Solve	the following questions (Each question carries 10 marks):
	(a)	Describe the stationary perturbation theory for solving Schrodinger
		equation of a non-degenerate system and obtain the expression for first
		order correction to energy.

Outline WKB method for a one-dimensional case and derive the

10

(b)

connection formulae.

WT		(3) NEPRT—111—	202
5.	Solve	the following question (Each question carries 10 marks) :	
	(a)	Describe the laboratory and centre of mass reference frames.	10
	(<i>b</i>)	Explain in detail the Born approximation.	10
6.	Write	short notes on (5 marks each):	20
	(a)	Unitary transformation	
	(<i>b</i>)	Spin angular momentum	
	(c)	Fermi Golden Rule	
	(d)	Symmetric and asymmetric wave functions.	