This question paper contains 3 printed pages]

(c)

(d)

NEPRT—16—2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (First Semester) EXAMINATION

APRIL/MAY, 2024

PHYSICS

SPHYC-401

(Mathematical Methods in Physics)

(Friday, 19-4-2024) Time: 10.00 a.m. to 1.00 p.m. Time—3 Hours Maximum Marks—80 All questions carry equal marks. N.B.:(i)Question No. 1 is compulsory. (ii)Solve any three of the remaining five questions (Q. Nos. 2 to 6). (iii)(iv)Figures to the right indicate full marks. Solve the following questions 20 Inverse of a matrix (a) Recurrence relations of Legendre's polynomial (b)

P.T.O.

First and second shifting properties of Laplace's transform

Limit and continuity of a complex function.

2. (a) Solve the following system of linear non-homogeneous equations : 20

$$x + y + z = 6$$

$$x - y + z = 2$$

$$2x + y - z = 1$$

- (b) Let \mathbf{R}^{3-} be the Euclidean inner product use the Gram-Schmidt's orthogonalization process to transform the vectors u_1 = (1, 2, 1), u_2 = (2, 1, 4) and u_3 = (4, 5, 6) into orthogonal basis (v_1, v_2, v_3) .
- 3. (a) Find the solution of differential equation of Legendre's polynomial : 20 $(1 x^2)y'' 2xy' + n(n + 1)y = 0.$
 - (b) Discuss the orthogonality condition of Bessel polynomial.
- 4. (a) Find the Fourier series of the given function: 20

$$f(x) = \pi - x, \quad 0 < x < \pi$$

- (b) Explain the first and second shifting properties of inverse Laplace transform and find the inverse Laplace of the following:
 - $(i) \qquad \frac{1}{(S+2)^5}$
 - (ii) $\frac{1}{9S^2 + 6S + 1}$.

5. (a) If f(z) is analytic in a closed curve 'c' except at a finite no. of poles within 'c', then show that :

 $\int_c f(z)dz = 2\pi i$ [sum of residues at the poles in 'c']

- (b) (i) Check whether the given function is analytic or not $f(z) = z^2$
 - (ii) Solve $\int_{C} \frac{z^2 + 1}{z^2(z 2)} dz$, where c : |z| = 1.
- 6. Write short notes on the following:
 - (a) Types of matrices
 - (b) Recurrence relation of Hermite polynomial
 - (c) Fourier complex integral
 - (d) Harmonic function.