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1. Introduction
Fractional differential equations appear in various fields of engineering and science such
as viscoelasticity, electrochemistry, control, electromagnetic, porous media, etc. For example,
in [29–32, 36, 40, 41], we can see applications of fractional differential equations in signal
processing, complex dynamics in biological tissues, viscoelastic materials, thermal systems and
heat conduction. One can see the application of fractional differential equations in complex
physical systems, physical systems description and control ([6,7,41]).
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Nonlinear quadratic integral equations appear very often, in many applications of real
world problem. For examples, quadratic integral equations are often applicable in the theory
of radiactive transfer, kinetic theory of gases, in the theory of neutron transport and in the
traffic theory. Numerous research papers and monographs devoted to quadratic differential
and integral equations of fractional order have appeared (see [5,8,11,13–16,20,21,23,24,27,
33–35,39]). These papers contain various types of existence results for equations of fractional
order. In this paper, we study the existence results for fractional order quadratic functional
Integro-Differential equation .Along with the locally attractivity and extremal solutions along
with suitable example.

2. Statement of the Problem
Let ζ ∈ (0,1). R denote the real numbers whereas R+ be the set of nonnegative numbers i.e.
R+ = [0,∞)⊂R.

Consider the functional integro-differential equations of fractional order
dζ

dtζ
[x(t)− f (t, x(t))]= g

(
t,

∫ t

0
h(s, xs)

)
ds ∀ t ∈R+ , (2.1)

where xt :R+ →R, f (t, x)= f :R+×R→R, g(t, x)= g :R+×R×R and by a solution of the (2.1)
we mean a function x ∈ BC(R+,R) that satisfies (2.1) on R+, and BC(R+,R) is the space of
continuous and bounded real-valued functions defined on R+.

Applying a Krisonoselkii’s fixed point theorem [12,25,26] the existence results for QFIDE
(2.1) will be obtained.

We collect some preliminary definitions and auxiliary results that will be used in the follows.

3. Preliminaries
Let X = BC(R+,R) be Banach algebra with norm ‖ ·‖ and let O be a subset of X . Let a mapping
A : X → X be an operator and consider the following operator equation in X , namely,

x(t)= (Ax)(t) ∈R+ . (3.1)

Definition 3.1 ([4]). The solution x(t) of the equation (3.1) is said to be locally attractive if there
exists an closed ball Br[0] in BC(R+,R) such that for arbitrary solutions x = x(t) and y= y(t) of
equation (3.1) belonging to Br[0]∩Ω such that

lim
t→∞(x(t)− y(t))= 0 . (3.2)

Definition 3.2 ([4]). Let X be a Banach space. A mapping A : X → X is called Lipschitz if there
is a constant α > 0 such that ‖Ax−Ay‖ = α‖x− y‖ for all x, y ∈ X if α < 1 then A is called a
contraction on X with the contraction constant α.

Definition 3.3 (Dugundji and Granas [16]). An operator A on a Banach space X into itself is
called compact if for any bounded subset S of X , A(S) is a relatively compact subset of X . If A
is continuous and compact, then it is called completely continuous on X .
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Let X be a Banach space with the norm ‖ · ‖ and let A : X → X be an operator (in general
nonlinear). Then A is called

(i) compact if A(X ) is relatively compact subset of X ;

(ii) totally bounded if A(S) is a totally bounded subset of X for any bounded subset S of X ;

(iii) completely continuous if it is continuous and totally bounded operator on X .

It is clear that every compact operator is totally bounded but the converse need not be true.
The solutions of (2.1) in the space BC(R+,R) of continuous and bounded real-valued functions

defined on R+. Define a standard supremum norm ‖ ·‖ and a multiplication “·” in BC(R+,R) by

‖x‖ = sup{|x(t)| : t ∈R+} , (3.3)

(xy)(t)= x(t)y(t) , t ∈R+ . (3.4)

Clearly, BC(R+,R) becomes a Banach space with respect to the above norm and the
multiplication in it. By L1(R+,R) we denote the space of Lebesgue integrable functions on
R+ with the norm ‖ ·‖L1 defined by

‖x‖L1 =
∫ ∞

0
|x(t)|dt . (3.5)

Denote by L1(a,b) be the space of Lebesgue integrable functions on the interval (a,b), which is
equipped with the standard norm. Let x ∈L1(a,b) and let β> 0 be a fixed number.

Definition 3.4 ([35]). The Riemann-Liouville fractional integral of order β of the function x(t)
is defined by the formula:

Iβx(t)= 1
G(β)

∫ t

0

x(s)
(t− s)1−β ds , t ∈ (a,b) , (3.6)

where G(β) denote the gamma function.

It may be shown that the fractional integral operator Iβ transforms the space L1(a,b) into
itself and has some other properties (see [4,9,10,16,28,35,39]).

Definition 3.5. A set A ⊆ [a,b] is said to be measurable if m∗A = m∗A. In this case we define
mA, the measure of A as mA = m∗A = m∗A.
If A1 and A2 are measurable subsets of [a,b] then their union and their intersection is also
measurable.
Clearly, every open or closed set in R is measurable.

Definition 3.6. Let f be a function defined on [a,b]. Then f is measurable function if for each
α ∈ R, the set {x : f (x)>α} is measurable set.
i.e. f is measurable function if for every real number α the inverse image of (α,∞) is an open
set.
As (α,∞) is an open set and if f is continuous, then inverse image under f of (α,∞) is open sets
being measurable, hence every continuous function is measurable.
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Definition 3.7. A sequence of functions fn is said to converge uniformly on an interval [a,b] to
a function f if for any ε> 0 and for all x ∈ [a,b] there exists an integer N (dependent only on ε)
such that for all x ∈ [a,b]

| fn(x)− f (x)| < ε , ∀ n ≥ N .

Definition 3.8. The family F is equicontinuous at a point x0 ∈ X if for every ε> 0 there exists
δ> 0 a such that d( f (x0), f (x))< ε for all f ∈ F and all x that d(x0, x)< δ.
The family is pointwise equicontinuous if it is equicontinuous at each point of X .
The family is uniformly equicontinuous if for every ε > 0 there exists δ > 0 a such that
d( f (x1), f (x2))< ε for all f ∈ F and all x1, x2 ∈ X such that d(x1, x2)< δ.

Theorem 3.1 (Arzela-Ascoli Theorem [21]). Every uniformly bounded and equi-continuous
sequence { fn} of functions in C(J,R), has a convergent subsequence.

Theorem 3.2 ([21]). A metric space X is compact iff every sequence in X has a convergent
subsequence.

We employ a hybrid fixed point theorem of Krasnoselskii’s for proving the existence result.

Theorem 3.3 (Krasnoselskii’s [12,25,26]). Let X be a Banach space and D be a bounded closed
convex subset of X . Let A, B maps D into X s.t. Au+Bu ∈ D for every (u,v) ∈ D.
If A is a contraction and B is completely continuous then the equation Aw+Bw = w has a
solution w on D. i.e.

(a) A is a contraction,

(b) B is completely continuous,

(c) Au+Bu ∈ D.

4. Existence Results
Definition 4.1 ([21]). A mapping g :R+×R→R is said to be Caratheodory if

(1) t → g(t, x) is measurable for all x ∈R, and

(2) x → g(t, x) is continuous almost everywhere for t ∈R+.

Again a caratheodory function g is called L1-Caratheodory if

(3) for each real number r > 0 there exists a function hr ∈L1(R+,R) such that |g(t, x)| = hr(t)
a.e. t ∈R+ for all x ∈R with |x| = r.

Finally, a Caratheodory function g(t, x) is called L1
R

-Caratheodory if

(4) there exist a function h ∈L1(R+,R) such that |g(t, x)| = h(t).

a.e. t ∈R+ for all x ∈R.

For convenience, the function h is referred to as a bound function of g.

We consider the nonlinear quadratic functional integro-differential equation (2.1) under the
following assumptions:
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(H1) The function f (t, x) : R+ × R → R is continuous and bounded with bound F =
sup

(t,x)∈R+→R

| f (t, x)| there exists a bounded function l :R+ →R+ with bound L satisfying

| f (t, x)− f (t, y)| = l(t)|x− y|
2(N +|x− y|) , t ∈R+, for all x, y ∈R and 0< L ≤ N

and vanishes as lim
t→∞.

(H2) The functions g :R+×R→R satisfy caratheodory condition (i.e. measurable in t for all
x ∈R and continuous in x for all t ∈R+) and there exist function h1 ∈L1(R+,R) such that
g(t, x)≤ h1(t) ∀ (t, x) ∈R+×R.

(H3) The uniform continuous function v :R+ →R+ defined by the formulas v1(t)= ∫ t
0

h1(s)
(t−s)1−ζ

ds,
is bounded on R+ and vanish at infinity, that is, lim

t→∞v(t)= 0.

Remark 4.1. Note that if the hypothesis (H2) hold, then there exist constants K1 > 0 and such

that: K1 = sup
t≥0

1
G(ζ)

∫ t

0

h1(s)

(t− s)1−ζ ds .

Theorem 4.1. Suppose that the hypotheses [(H1)-(H3)] are hold. Then the equation (2.1) has a
solution in the space BC(R+,R). Moreover, solutions of the equation (2.1) are locally attractive
onR+.

Proof. By a solution of the (2.1) we mean a continuous function x :R+ →R that satisfies (2.1)
on R+.

Let X = BC(R+,R) be Banach Algebras of all continuous and bounded real valued function
on R+ with theorem

‖x‖ = sup
t∈R+

|x(t)| . (4.1)

We show that existence of solution for (2.1) under some suitable conditions on the functions
involved in (2.1).
Consider the closed ball Br[0] in X centered at origin 0 and of radius r, where

r = F + (K1)> 0 ,

dζ

dtζ
[x(t)− f (t, x(t))]= g

(
t,

∫ t

0
h(s, xs)

)
ds ,

x(t)= f (t, x(t))+ Iζg
(
t,

∫ t

0
h(s, xs)

)
ds , ∀ t ∈R+ .

Let us define two operators A and B on Br[0] by

Ax(t)= f (t, x(t)) (4.2)

and

Bx(t)= Iζg
(
t,

∫ t

0
h(s, xs)

)
ds , ∀ t ∈R+ . (4.3)

In the view of hypotheses (H1), the mapping A is well defined and the function Ax is continuous
and bounded on R+. The function Bx is also continuous and bounded in view of hypotheses
(H2).
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Therefore, A and B define the operators A,B : Br[0]→ X .
We wish to show that A andB satisfy all the requirements of theorem (3.3) on Br[0].

Step I: Firstly, we show that A is a contraction mapping. Let x, y ∈ X be arbitrary, and then by
hypothesis (H1), we get

|Ax(t)−Ay(t)| = | f (t, x(t))− f (t, y(t))|

= l(t)|x(t)− y(t)|
2(N +|x− y|)

= L|x(t)− y(t)|
2(N +|x− y|) , for all t ∈R+ . (4.4)

Taking supremum over t

‖Ax−Ay‖ = L‖x− y‖
2(N +‖x− y‖)

, for all x, y ∈ X . (4.5)

This shows that A is Contraction mapping on X with the contraction constant L1 = L
2(N+‖x−y‖) .

Step II: Secondly, we show that B is completely continuous operator on Br[0].

Firstly, we show that B is continuous on Br[0].

Case I: Suppose thatt = T there exist T > 0 and let us fix arbitrary ε> 0 and take x, y ∈ Br[0]
such that ‖x− y‖ = ε. Then

|(Bx)t− (By)t| =
∣∣∣∣Iζg

(
t,

∫ t

0
h(s, xs)

)
ds− Iζg

(
t,

∫ t

0
h(s, ys)

)
ds

∣∣∣∣
=

∣∣∣∣∣ 1
G(ζ)

∫ t

0

g(t,
∫ t

0 h(s, xs))ds
(t− s)1−ζ ds− 1

G(ζ)

∫ t

0

g(t,
∫ t

0 h(s, ys))ds
(t− s)1−ζ ds

∣∣∣∣∣
= 1

G(ζ)

[∫ t

0

|g(t,
∫ t

0 h(s, xs))ds|
(t− s)1−ζ ds+

∫ t

0

|g(t,
∫ t

0 h(s, ys))ds|
(t− s)1−ζ ds

]

= 1
G(ζ)

[∫ t

0

h1(s)
(t− s)1−ζ ds+

∫ t

0

h1(s)
(t− s)1−ζ ds

]
= 2

G(ζ)

[∫ t

0

h1(s)
(t− s)1−ζ ds

]
= 2v(t)

G(ζ)
. (4.6)

Hence, we see that there exists T > 0, such that v(t) = εG(ζ)
2 for t > T . Since ε is an arbitrary,

from (4.6) we derive that

|(Bx)t− (By)t| = ε . (4.7)

Case II: Further, let us assume that, t ∈ [0,T] then evaluating similarly to above we obtain the
following estimate

|(Bx)t− (By)t| =
∣∣∣∣Iζg(t,

∫ t

0
h(s, xs))ds− Iζg(t,

∫ t

0
h(s, ys))ds

∣∣∣∣
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=
∣∣∣∣∣ 1
G(ζ)

∫ T

0

g(t,
∫ t

0 h(s, xs))
(t− s)1−ζ ds− 1

G(ζ)

∫ T

0

g(t,
∫ t

0 h(s, ys))
(t− s)1−ζ ds

∣∣∣∣∣
= 1

G(ζ)

[∫ T

0

|g(t,
∫ t

0 h(s, xs))− g(t,
∫ t

0 h(s, ys))|
(t− s)1−ζ ds

]

= 1
G(ζ)

[∫ T

0

wT
r (g,ε)

(t− s)ζ
ds

]
=

[
wT

r (g,ε)
G(ζ)ζ

Tζds
]

=
[

wT
r (g,ε)

G(ζ+1)
Tζds

]
(4.8)

where

wT
r (g,ε)= sup

{∣∣∣∣g(
s,

∫ t

0
h (s, xs)

)
− g

(
s,

∫ t

0
h(s, ys)

)∣∣∣∣ : s ∈ [0,T]; x, y ∈ [−r, r], |x− y| = ε
}

.

Therefore, from the uniform continuity of the function g(t, x) on the set [0,T]× [−r, r]. We derive
that wT

r (g,ε)→ 0 as ε→ 0.
Now, combining the Case I and II, we conclude that the operator B is continuous operator

on closed ball Br[0] in to itself.

Step III: Next we show that B is compact on Br[0].

(A) First prove that every sequence {Bxn} in B(Br[0]) has a uniformly bounded sequence in
B(Br[0]). Now by (H1)–(H3)

|(Bxn)t| =
∣∣∣∣∣ 1
G(ζ)

∫ t

0

g(t,
∫ t

0 h(s, xs
n))

(t− s)1−α ds

∣∣∣∣∣
= 1

G(ζ)

∫ t

0

|g(t,
∫ t

0 h(s, xs
n))|

(t− s)1−ζ ds

= 1
G(ζ)

∫ t

0

h1(s)
(t− s)1−ζ ds

= v(t)
G(ζ)

= K1 , for all t ∈R+ . (4.9)

Taking supremum over t, we obtain ‖Bxn‖ = K1 ∀ n ∈ N .
This shows that {Bxn} is a uniformly bounded sequence in B(Br[0]).

(B) Now we proceed to show that sequence {Bxn} is also equicontinuous.
Let ε> 0 be given. Since there is constant T > 0.

Case I: If t1, t2 ∈ [0,T], then we have

|(Bxn)t2 − (Bxn)t1| =
∣∣∣∣∣ 1
G(ζ)

∫ t2

0

g(t,
∫ t

0 h(s, xn
s ))

(t2 − s)1−ζ ds− 1
G(ζ)

∫ t1

0

g(t,
∫ t

0 h(s, xn
s ))

(t1 − s)1−ζ ds

∣∣∣∣∣
=

∣∣∣∣∣ 1
G(ζ)

∫ t2

0

|g(t,
∫ t

0 h(s, xn
s ))|

(t2 − s)1−ζ ds− 1
G(ζ)

∫ t1

0

|g(t,
∫ t

0 h(s, xn
s ))|

(t1 − s)1−ζ ds

∣∣∣∣∣
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=
∣∣∣∣ 1
G(ζ)

∫ t2

0

h1(s)
(t2 − s)1−ζ ds− 1

G(ζ)

∫ t1

0

h1(s)
(t1 − s)1−ζ ds

∣∣∣∣
= 1

G(ζ)

∣∣∣∣∫ t2

0

h1(s)
(t2 − s)1−ζ ds−

∫ t1

0

h1(s)
(t1 − s)1−ζ ds

∣∣∣∣
= 1

G(ζ)
|v(t2)−v(t1)| (4.10)

from the uniform continuity of the function v(t) on [0,T], we get |(Bxn)t2 − (Bxn)t1| → 0 as
t1 → t2.

Case II: If t1, t2 = T , then we have

|(Bxn)t2 − (Bxn)t1| =
∣∣∣∣∣ 1
G(ζ)

∫ t2

0

g(t,
∫ t

0 h(s, xn
s ))

(t2 − s)1−ζ ds− 1
G(ζ)

∫ t1

0

g(t,
∫ t

0 h(s, xn
s ))

(t1 − s)1−ζ ds

∣∣∣∣∣
=

∣∣∣∣∣ 1
G(ζ)

∫ t2

0

|g(t,
∫ t

0 h(s, xn
s ))|

(t2 − s)1−ζ ds− 1
G(ζ)

∫ t1

0

|g(t,
∫ t

0 h(s, xn
s ))|

(t1 − s)1−ζ ds

∣∣∣∣∣
=

∣∣∣∣∣ 1
G(ζ)

∫ t2

0

|g(t,
∫ t

0 h(s, xn
s ))|

(t2 − s)1−ζ ds

∣∣∣∣∣+
∣∣∣∣∣ 1
G(ζ)

∫ t1

0

|g(t,
∫ t

0 h(s, xn
s ))|

(t1 − s)1−ζ ds

∣∣∣∣∣
= v(t2)

G(ζ)
+ v(t1)

G(ζ)

= 0+ ε

2
+ ε

2
= ε as t1 → t2 . (4.11)

Case III: If t1, t2 ∈R+ with t1 < T < t2, then we have

|(Bxn)t2 − (Bxn)t1| = |Bxn(t2)−Bxn(T)|+ |Bxn(T)−Bxn(t1)| . (4.12)

Now, if t1 → t2 then t1 → T and T → t2.
Therefore,

|Bxn(t2)−Bxn(T)|→ 0, |Bxn(T)−Bxn(t1)|→ 0

and so

|(Bxn)t2 − (Bxn)t1|→ 0 as t1 → t2 for all t1, t2 ∈R+ . (4.13)

Hence {Bxn} is an equicontinuous sequence of functions in B(Br[0]).
Now, an application of the Arzela-Ascoli theorem yields that {Bxn} has a uniformly

convergent subsequence in B(Br[0]) and consequently B(Br[0]) is a relatively compact subset
of X . This shows that B is compact operator on Br[0]. Hence by Dugungi B is completely
continuous on Br[0].

Step IV: Next, we show that Ax+B, x ∈ Br[0] for all x ∈ Br[0] is arbitrary, then

x(t)= f (t, x(t))+ Iζg
(
t,

∫ t

0
h(s, xs)

)
ds

|Ax(t)+Bx(t)| = |Ax(t)|+ |Bx(t)|

= | f (t, x(t))|+
∣∣∣∣Iζg

(
t,

∫ t

0
h(s, xs)

)
ds

∣∣∣∣
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= F +
[

1
G(ζ)

∫ t

0

|g(t,
∫ t

0 h(s, xs))|
(t− s)1−ζ ds

]

= F +
[

1
G(ζ)

∫ t

0

h1(s)
(t− s)1−ζ ds

]
= F +

[
v(t)
G(ζ)

]
= F + [K1]

= r for all t in R+ .

Taking the supremum over t, we obtain ‖Ax+Bx‖ = r for all x ∈ Br[0].

Hence hypothesis (C) of Theorem holds. Now, applying Krisonoselkii’s Theorem 3.3 gives
that QFIE (2.1) has a solution on R+.

Hence hypothesis (C) of Theorem 3.3 holds.

Step V: Now, for the local attractivity of the solutions for (2.1), let’s assume that x and y be any
two solutions of the (2.1) in Br[0] defined on R+. Then we have,

|x(t)− y(t)| =
∣∣∣∣ f (t, x(t))+ Iζg

(
t,

∫ t

0
h(s, xs)

)
ds− f (t, y(t))− Iζg

(
t,

∫ t

0
h(s, ys)

)
ds

∣∣∣∣
= | f (t, x(t))|+ | f (t, y(t))|+

∣∣∣∣Iζg
(
t,

∫ t

0
h(s, xs)

)
ds− Iζg

(
t,

∫ t

0
h(s, ys)

)
ds

∣∣∣∣
= F +F +

∣∣∣∣∣ 1
G(ζ)

∫ t

0

1

(t− s)1−ζg(t,
∫ t

0 h(s, xs))
ds

∣∣∣∣∣
+

∣∣∣∣ 1
G(ζ)

∫ t

0

1
(t− s)1−ζ g

(
t,

∫ t

0
h(s, ys)

)
ds

∣∣∣∣
= 2F +

[
1

G(ζ)

∫ t

0

|g(t,
∫ t

0 h(s, xs))|
(t− s)1−ζ ds

]
+

[
1

G(ζ)

∫ t

0

|g(t,
∫ t

0 h(s, ys))|
(t− s)1−ζ ds

]

= 2F +
[

1
G(ζ)

∫ t

0

h1(s)
(t− s)1−ζ ds

]
+

[
1

G(ζ)

∫ t

0

h1(s)
(t− s)1−ζ ds

]
= 2F +2

[
1

G(ζ)

∫ t

0

h1(s)
(t− s)1−ζ ds

]
= 2F +2

[
v(t)
G(ζ)

]
(4.14)

for all t ∈R+. Since and lim
t→∞v(t)= 0 this gives that limsup

t→∞
|x(t)− y(t)| = 0. Thus, the (2.1) has a

solution and all the solutions are locally attractive on R+.

5. Existence of Extremal Solution
In this section we show that given equation (2.1) has Maximal and Minimal solution:

Definition 5.1 ([33]). A function f :R+×R×R is called Chandrabhan if

(i) The function (x, y)→ f (x, y, z) is measurable for each z ∈R.
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(ii) The function z → f (x, y, z) is non-decreasing for almost each (x, y) ∈R+.

Definition 5.2 ([17,18]). A closed and non-empty set K in a Banach Algebra X is called a cone
if

(i) K+K⊆K.

(ii) λK⊆K for λ ∈K, λ= 0.

(iii) {−K}∩K= 0 where 0 is the zero element of X

and called positive cone if

(iv) K◦K⊆K

and the notation ◦ is a multiplication composition in X

We introduce an order relation = in X as follows.
Let x, y ∈ X then x = y if and only if y− x ∈ K. A cone K is called normal if the norm

‖ · ‖ is monotone increasing on K. It is known that if the cone K is normal in X then every
order-bounded set in X is norm-bounded set in X .

Definition 5.3. A solution xM of the integral equation is said to be maximal if for any other
solution x to the problem x(t)= xM(t) ∀ t ∈R+.

Again a solution xm of the integral equation is said to be minimal if for any other solution x
to the problem xm(t)= x(t) ∀ t ∈R+.

Lemma 5.1 ([9]). Let p1, p2, q1, q2 ∈K be such that p1 = q1 and p2 = q2 then p1 p2 = q1q2.
For any p1, p2 ∈ X = C(R+,R), p1 = p2 the order interval [p1, p2] is a set in X given by,
[p1, p2]= {x ∈ X : p1 = x = p2}.

Definition 5.4 ([11]). A mapping R : [p1, p2] → X is said to be nondecreasing or monotone
increasing if x = y implies Rx = R y for all x, y ∈ [p1, p2].

Theorem 5.1 ([10]). Let K be a cone in a Banach algebra X and let [x, x] ∈ X .
Suppose A,B : [x, x]→K be two operators such that

(a) A is lipschitz with Lipschitz constant α.

(b) B is totally bounded.

(c) x1 +Bx2 ∈ [x, x] ∀ x1, x2 ∈ [x, x].

(d) A and B are nondecreasing.

Further, if the cone K is positive and normal then the operator equation Ax+Bx = x has a
least and a greatest positive solution in [x, x] whenever αM < 1
Where M = ‖B[x, x]‖sup{‖Bx : x ∈ [x, x]‖}.

We equip the space BC(R+,R) with the order relation = with the help of the cone defined by

K= {x ∈C(R+,R) : x(t)= 0 ∀ t ∈R+} .

Thus x = x iff x(t)= x(t) ∀ x ∈R+.
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It is well known that the cone K is positive and normal in BC(R+,R).

We consider another hypothesis:

(H4) : Suppose f (t, x)= f :R+×R×R, g(t, x)= g :R+×R×R are Chandrabhan.

(H5) : There exists a function h ∈ L1(R+, R) such that

|g(t, x)| = h(t, x), ∀ t ∈R+ and x ∈R
(H6) : The given problem has a lower solution x and upper solution x with

x = x holds if ‖L1‖
{

1
Γ(ζ+1)Tζ‖h‖L1

}
< 1 .

Theorem 5.2 ([10]). Suppose that the Hypotheses (H4)-(H6) are holds. Then problem (2.1) have
a minimal and maximal positive solution on R+.

Proof. Let X = BC(R+,R) and define an order relation ≤ by the cone K given by Definition 5.2.
Clearly K is normal cone in X . Define the two operators A and B on X by (4.2) and (4.3) resp.
then (2.1) is equivalent to operator equation Ax+Bx = x. Now, it is shown as in the proof, that
A is contraction mapping and B is completely continuous operator.

Let x1, x2 ∈ [x, x] s.t. x1 = x2 then by hypothesis (H4)

Ax1(t)= f (t, x1(t))= f (t, x2(t))=Ax2(t), for all t ∈R+
and

Bx1(t)= 1
G(ζ)

∫ t

0

1
(t− s)1−ζ g

(
t,

∫ t

0
h(s, x1s)

)
ds

=
[

1
G(ζ)

∫ t

0

1
(t− s)1−ζ g

(
t,

∫ t

0
h(s, x2s)

)
ds

]
=Bx2(t) .

So A and B are non decreasing operator on [x, x].
Again by hypothesis

x(t)= f (t, x(t))+
[

1
G(ζ)

∫ t

0

g(t,
∫ t

0 h(s, xs))

(t− s)1−ζ ds

]

= f (t, x(t))+
[

1
G(ζ)

∫ t

0

g(t,
∫ t

0 h(s, xs))
(t− s)1−ζ ds

]

= f (t, x(t))+
[

1
G(ζ)

∫ t

0

g(t,
∫ t

0 h(s, xs))
(t− s)1−ζ ds

]
= x(t), for all x ∈ [x, x] and t ∈R+ .

Hence Ax+Bx ∈ [x, x] for all x ∈ [x, x]

M = ‖B([x, x])‖
= sup{‖Bx‖ : x ∈ [x, x]}
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= sup

{
1

G(ζ)

∫ t

0

g(t,
∫ t

0 h(s, xs))
(t− s)1−ζ ds

}

= 1
G(ζ)

∣∣∣∣∣
∫ t

0

|g(t,
∫ t

0 h(s, xs))|
(t− s)1−ζ ds

∣∣∣∣∣
= ‖h1‖

G(ζ)

∫ t

0

1
(t− s)1−ζ ds

= ‖h1‖
Γ(ζ)

[
(t− s)ζ

−ζ
]t

0

= 1
Γ(ζ+1)

Tζ‖h1‖L1

L1M = ‖L1‖
{

1
Γ(ζ+1)

Tζ‖h1‖L1

}
< 1

Thus operator equation has minimal and maximal solution in [x, x].
Thus given problem have minimal and maximal positive solution on R+.

Consider the following quadratic functional integral equation of type (2.1)

x(t)= 1
6

{sin2t[x(t)]e−t}+
[

1
G(ζ)

∫ t

0

1
(t− s)1−ζ

1
2tζ+5 ds

]
, ∀ t ∈R+ (5.1)∫ t

0
h(s, xs)ds =

∫ t

0

1
t3 s ds = 1

t3

[
s2

2

]t

0
= 1

t3
t2

2
= 1

2t

g
(
t,

∫ t

0
h(s, xs)ds

)
= 1

tζ+4
1
2t

= 1
2tζ+5

(H1) : Now

| f (t, x(t))− f (t, y(t))| = 1
6
|{sin2t[x(t)]e−t}− {sin2t[y(t)]e−t}|

= 1
6

e−t|sin2t[x(t)− y(t)]|
= l(t)|x(t)− y(t)|l(t)

= 1
6

e−t sin2t

(H2): Take h1(t)= 1
tζ+5 s2 it is continuous on R+.

Implies g
(
t,

∫ t
0 h(s, xs)ds

)
= h1(t).

That is
1

2tζ+5 = 1
tζ+5 s2.

(H3):

v(t)=
∫ t

0

h1(s)
(t− s)1−ζ ds

=
∫ t

0

1
tζ+5 s2

(t− s)1−ζ ds

= 1
tζ+5

∫ t

0

s2

(t− s)1−ζ ds
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= 1
tζ+5

∫ t

0
s2(t− s)ζ−1ds

= 1
tζ+5

{[
s2 (t− s)ζ

−ζ
]t

0
−

∫ t

0
2s

(t− s)ζ

−ζ ds

}

= 1
tζ+5

{
0−

∫ t

0
2s

(t− s)ζ

−ζ ds
}

= 2
1

tζ+5

∫ t

0
s

(t− s)ζ

ζ
ds

= 2
1

tζ+5

{[
s

(t− s)ζ+1

−ζ(ζ+1)

]t

0
−

∫ t

0

(t− s)ζ+1

−ζ(ζ+1)

}

= 2
1

tζ+5

{
0−

∫ t

0

(t− s)ζ+1

−ζ(ζ+1)

}
= 2

1
tζ+5

{∫ t

0

(t− s)ζ+1

ζ(ζ+1)

}
= 2

1
tζ+5

[
(t− s)ζ+2

−ζ(ζ+1)(ζ+2)

]t

0

= 2
1

tζ+5

{
0− tζ+2

−ζ(ζ+1)(ζ+2)

}
= 2

1
tζ+5

{
tζ+2

ζ(ζ+1)(ζ+2)

}
→ 0 as t →∞ .

v(t) is continuous and bounded on R+ and vanish at infinity.
It follows that all the conditions (H1)-(H5) are satisfied. Thus by Theorem 4.1, above problem

(5.1) has a solution R+.

6. Conclusion
In this paper we have proved existence of solution to a Quadratic Functional Integro-Differential
Equation of Fractional order and finally we obtained the result for extremal solution with
concrete example.
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