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ABSTRACT:An algebraic fixed point theorem involving two operators in Banach Algebras is used to discuss the
existence the solution for fractional order quadratic functional integral equation inR,. Krasonoselkii’s fixed point
theorem is used here to establish the existence results .Also we prove the existence of maximal and minimal solutions for

considered equation. One counter example is considered.
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I. INTRODUCTION:

It is well known that integral equations have many useful applications in describing numerous events and problems of real
world. The theory of integral equations is rapidly developing using the tools of functional analysis, topology énd fixed point
theory. Nonlinearquadratic functional-integral equations have been studied in the vehicular traffic, the biology, theory of
optimal control and economics, etc. (Argyros, LK., 1985). There are various cases of functional integral in literature, (Argyros,
1.K., 1985; Deimling K., 1985; Banas I., B. Rzepka, 2003; XiaolingHu,Jurang Yan, 2006; Dhage B.C., 2006; Maleknejad K.,
2008) and etc. :

Nonlinear quadratic integral equations appear very often, in many applications of real world problem. For examples, quadratic
integral equations are often applicable in the theory of radiactive transfer, kinetic theory of gases, in the theory of neutron
transport and in the traffic theory. Numerous research papers and monographs devoted to differential and integral equations of
fractional order have appeared (see [1-10, 17]). In the last 40 year or so, many authors have studied the existence of solutions
for several classesof nonlinear quadratic integral equations. For example, Bana’s and Rzepka [21], Caballero ef al. [18-19],
Darwish [25-30] these papers contain various types of existence results for equations of fractional order.

In this paper, we study the existence results of the following nonlinear quadratic functional integral equation of fractional order.

t
<) = f (t,x(rm (t))) . [r(lg) fn {9(5.x(ﬁﬂz@(i))_'*;)’i?x(fps(s)))] ds] (1)
forallte R
Where f(t,x) = Ry XR >R g(t,x) = g:RL X R~ Rh(t,x) =h:R. X R - Rand @1 ,¢,,03: Ry = R,
By a solution of the QFIE (1.1) we mean a function x € BC(R+, R)that satisfies y
Vr. AniChidrawar
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WhereBC(R,,R) is the space of continuous and bounded real-valued functions defined on R..In this paper, we prove the

existence of the solution for QFIE (1.1) employing Krasonoselkii’s fixed point theorem. In the next section, we collect some

preliminary definitions and auxiliary results that will be used in this paper.

I1. PRELIMINARIES:

Let X = BC(R,, R)be Banach algebra with norm ” 2 H and let ) be a subset of X. Let a mapping A: X — Xbe a
consider the following operator equation in X, namely,x(t) = (Ax)(t)(2.1)
Below we give different characterizations of the solutions for operator equation (2.1) onR ;.
Definition 2.1{20]:Let X be a Banach space. A mapping A : X = X is called Lipschitz if there is a constanta > 0 such that
[|Ax = Ay|l < allx — yll forallx,y € XIfa < 1 then Ais called a contractionon X with the contraction constanta.
Definition 2.2:(Dugund;ji and Grana’s [13]). An operator A4 on a Banach space X into itself is called Compact if for any
bounded subset S of X, A(S) is a relatively compact subset of X. If 4 is continuous and compact, then it is called completely
continuous on X.
Let X be a Banach space with the norm ||. |land LeteA : X — X be an operator (in general nonlinear). Then 4 is called

(i) Compact if A (X) is relatively compact subset of X;

(i1) Totally bounded if <A (S) is a totally bounded subset of X for any bounded subset S of X

(ii1) Completely continuous if it is continuous and totally bounded operator on X.
It is clear that every compact operator is totally bounded but the converse need not be true.
The solutions of (1.1) in the space BC (R, R)of continuous and bounded real-valued functions defined onR . Define a standard
supremum norm ||. || and a multiplication “.” in BC(R,, R)by

llxll = sup{lx(t)|: t € R, }(2.2)
(xy) () = x(D)y(t)t € Ry(2.3)

Definition 2.4{17]:The Riemann-Liouville fractional integral of order Sof the function x(t) is defined by the formula:

s B L
R0) J; (=T ds t € (a,b) (2.4)

Where I'(8) denote the gamma function.

Bx(t) =

It may be shown that the fractional integral operator I? transforms the space £!(a, b) into itself and has some other properties
(see [12-19])
Definition 2.5[17]:The left sided Riemann-Liouville fractional integral [10, 12, 18] of order B of real function fis defined as

S et skt
]“+f(x)—F(B)L (t_s)l_ﬁdtﬁ>0,x>a (2.5)

Theorem 2.1:(Arzela-Ascoli theorem) (8): If every uniformly bounded and equi-continuous sequence { f, } of functions

inC(J, R), then it has a convergent subsequence.
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Theorem 2.2[8]:A metric space X is compact iff every sequence in X has a convergent subsequence.

I111. EXISTENCE RESULTS:

Definition 3.1:A mapping g: Ry X R — Ris said to be Caratheodory if
I. t - g(t,x) is measurable forall x € R, and
2. x — g(t,x) is continuous almost everywhere for t € R,

Again a caratheodory function g is called L-Caratheodory if

3 for each real number r > 0 there exists a function h, € L(R4,R) such that |g(t,x)| < h.(t)
x € Rwith |x| <r
Finally, a Caratheodory function g(t,x) is calledLy — Caratheodory if
4. there exist a function h € LY(R,,R) such that |g(t,x)| < h(t)
ae.teR, forallx R
For convenience, the function A is referred to as a bound function ofg.

We recall the fixed point theorem due to Krasonoselkii’s.

ISSN NO:0886-9367

a.e.

teR, forall

Theorem 3.1 :( Krasonoselkii’s) (31, 32, and 40)Let X be a Banach Space and D be a bounded closed convex subset of X.

LetA, B maps D into X s.t. Au+Bu€ D for every (u, v) € D.

If A is a contraction and B is completely continuous then the equation Aw + Bw = w has a solution w on D. i.e.

a) Ais a contraction

b) B is completely continuous

¢) Au + Bu € D.

Hypothesis:

Assume that following hypotheses are satisfied.

a) The function @y, @, ®3: R, — R, are continuous.

b) The function g, h: R, x R - R is continuous and

Satisfying  |g(t,x) — g(t. )| < @2 ()|x — y| t € R4 for allx,y ER

|h(t,x) =h(EY)| € esDlx —y|t € Ry forallx,y €R
¢) The function f: R, X R — R is continuous and bounded with bound

F = sup |f(t, x)|there exists a bounded function I : R, - R, with bound L satisfying
(tx)ER4L XR

lf(t,x)—f(t,y)lsz—ig{%'—) teR, foralx,y€Rand0 <L<N and vanishes as lim, .«

d) The function g, h: Ry X R = R satisfy caratheodory condition (i.e.measrable in ¢ for allx € R and continuous in x for

allt € R,) and there exist function m € L1(R,,R)  Such thatg(t, x) + h(t,x) < m(t)V(t,x) € Ry X Rwhere t € R, for

all x € R and lim,_., fnt m(s)ds =0
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€)The uniform continuous function v: R, — R defined by the formulas

_[F m(s)
v(t) = : —_—(t—s)l"f ds

is bounded onR, and vanish at infinity, that is,lim,_., v(t) = 0.
Remark 3.1:Note that if the hypothesis (b) and (d) hold, then there exist constantK > 0 such that:

1.t m) d d f‘[ll%llﬂirpalll
K=smi ), Ghart oy T

Theorem 3.2 :Suppose that the hypothesis [(a) — (¢)] holds. Then the QFIE (6.4.1) has a solution in the space BC(R, ,R)

ds <T({)

Proof: Consider the problem

1 (4 [9(s ¥(@a())) + hs, x5 (5]
0= 5 | e 2| 1 (12 )

Forallte R,

Where f(t,x) = iR, XR >R, g(t,x) = g: R, XR >R, h: Ry X R > Rand @1, 9, ¢3: Ry = Ry
Now we define two operators A, B :D =X s.1.
Ax () =f (t.X(fﬂl (t)))

[ [ [96 2@ + b, x5 G)
520 =[5 |, GEDE i

Consider the closed ball B, [0]=D inX centered at origin 0 and of radius r, where

r=F+(K)>0

We show that A4 and B satisfy all the requirements of theorem 3.1 on D
STEP I] A is Contraction

et x,y € X be arbitrary, and then by hypothesis (b) and (c), we get
jax(e) — Ay = |f (t.x(0: ©)) = £ (£:7(01 )|

_ 10lx(e: ) = (o1 )|
= 2(N + |x—yD

_ Lx(e1 ) = y(e1 ®)]
= 2(N + |x =y

forall teR,

Taking supremum over t

Lllx =yl

AN S
I T P!

forallx,y € X

L

This shows that A is contraction mapping L, = s
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Step II] To show thatB is continuous and compact operator

Firstwe show that B is continuous on D

Casel:Suppose that t = T there exist T > 0 and let us fix arbitrarye > 0 and take x,y € Dsuch that||x — y|| < €. Th
|(Bx)t — (By)tl

\ ft lg(s. x(92(s))) + (s, x(ga (D] |- 1 J“ [9Gs. y(@2(5))) + h(s, y(@3(IN] }
') r')

(t—s)— t—s)—~

(t =)t~ (t—s)~<¢

J‘ 5 x((f)z(s)) (5 J’(‘Pz(s))) S, x(‘Ps(S))) = (S,y(cpg(s)))
T(O F(()f

- -9

g (5. 2(0:2)) =g (s.7(02))| . t|p(s.2(03()) = k(5 ¥(93())
T Ij d”fu ( Ja

1 [ Nezllllx =l lpsllllx = i
SHO[L a—g%ids+L‘Et:ﬁ:—“]

lx = 11 [ ¢ Dlall + llosll
0 Uo D ‘“]

= r(c)r(o

forallt =T

Since & is an arbitrary, we derive that

|(Bx)t — (By)t| < £

Casell: Further, let us assume thatt € [0,T], then

|(Bx)t — (By)tl

% g(s.x(@2()) + h(s. x(@sN] 1 (*lg(sy(@a(s)) + h(s, (¢ N l
T Ao (=5 NGO {t=s)S
2 "Lg (s, x(@2(0) + his, x(@s(INI | " Lg(s,y(@2(s)) + 15, y(@3 (] I
T S ) e 1"(() (=57t

1 [ (7]a (s x(02()) = 965y + | (5. x(05())) = b5, y@s ()]
< ds

I'(¢) fo ft=s)'

1 ["wl(g,€) +wl(h, 6)
*TO f & —s) ]

1 [w(g,€) +w (he) 5 ]

d

SR ? o
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w; (g,€) + w; (h,€)
r{+1)

TSds

Where
wl (g, €) = supiflg(s,x) = g(s,M|:s € [0,TLx,y € [-r.r]Ix —y| < €}
w! (h,€) = supflh(s,x) — h(s,»)|:s€ [0, T x,y € [-r,rl|x—y| < €}

ISSN NO:0886-9367

Therefore, from the uniform continuity of the function g(t, x)and h(t, x) on the set [0, T] x [—r,7]; .we derive that w] (g,€) +

w!'(h,e) = 0ase — 0.

Now from case I and 11, we conclude that the operator B is continuous operator on closed ballD into itself.

Step ITI] Next we show that B is compact on D

(A) First prove that every sequence {Bx, } inD has a uniformly bounded sequence inDD.Now by(c) - (¢)
5, X s))) + h(s, x, S
o f 905, % (@2(5)) + h(s, %, (3())
Ircc)

E=
STICEACAO) ELICERCAO) I
I(Badel = r(c)j -1~
Sty
sl B v
v(t)
(B < Fs

[(Bx )t < K YVt € Ry
Taking supremum over t, we obtain ||Bx,|| <K VYn€N

This shows that {Bx,, } is a uniformly bounded sequence inD.

(B) Now to that show the sequence {Bx, }is equicontinuous sequence. Lete > 0 be given.

i) If t; , t; €[0,T] then we have

](an)tZ = (an)tl1
s 1 J’tz g(s.x,(@2(5))) + h(s, xn(%(s)))d 1 (% g(s %, (@2(5))) + (s, x, (‘Pa(s))) \
IR K(9) (t; —s) @) J (8 =)'~
= f‘z lg (s, % (@2 (S))) M CEACHO))] I g xa(@2()) + h(s xa (5 N,
i) t =5t~ F(O (TR
m(s) 1 i Emis)
S r(f)—‘; (£, — )~ i T Jy (=8¢ e
1 2 m(s) 1 m(s)
(=9t i b & =) g l
r(f) lv(tz) — v(ty)l
By the uniform continuity of the function v(t) on [0, T], we get
|(Bx,)t; — (Bx,)ty| = 0 ast; =ty
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ii)If t;, t; =T then we have

|(Bx,)tz — (Bxy)tal

IA

f‘z a(s, xn(coz(s)) + h(s. xn(ws(s)) I‘l a(s, xn(coz(s)) + h(s. %, (3(s)) i
6) t; =) TO t — ) g

L e (¢2())) + h(s, xn(rps(s))) 1 [ g(sxn(@2())) + h(s,xn(rpa(s)))

G | B (t; =)t B3] : (t; — )¢

M J” 90, xn(rpz(s))) + hs, % (#3())) | ot \ “ 905 % (92())) + k(s x93

6] t; — SN T@) Jy (6, — ) 3
v(ty)  v(t) €

S s

<eAsty = t;.

i) Ifty , t; ER

With t; < T <t, then we have

[(Bx,)t; — (Bx )ty | < |Bx,(t2) — Bx, (T)] + | B2, (T) = Bxy (81)]

Now if t; — t; thent; »Tand T— ¢,

Therefore,|Bx, (t; ) = Bx, (T)| = 0 and |Bx, (T) — Bx, (t; )| = 0

And so |(Bx,)t; — (Bx,)t; | = 0ast; = t, forallyy, t; ER,

Hence {Bx,} is an equicontinuous sequence of functions in X. So by the Arzela-Ascoli theorem {Bx,}has a uniformly

convergent subsequence on the compact subset [0, T]of R, We call the subsequence of the sequence itself. This Yields that B is
compact on.

So Bis completely continuous.
Step IV] Next we show that Ax +Bx € D

For ally, ¥ € D are arbitrary, then

lAx(t) + Bx(t)] = |Ax()] + |Bx ()]

£g(s, x(qu(s))) + h(s, x(‘Pa (S)))
() Jo (e )

|Ax(t) + Bx(t)] < H

+|f (t.x(e: )]

I"(() i =)

1 t m(s) LME o
1”({) -

lts 202D + his x(ps ]
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<r+ (9

<F+ [K]=r foralltinR,

Taking the supremum over t, we obtain [l Ax + Bx |I< r forallx € D

Hence hypothesis (c) of Theorem holds. Nowapplyingtheorem [3.1] gives that QFIE (1.1) has a solution on R .
Step V:Now for the local attractivity of the solutions for (1.1), let’s assume that x and v be any two solutions of the (1.1) in D

defined onR, . Then we have,

: (t' e (t))) 2 [r(lo J;t [g (s, x( o2 (s))) +h (s, x( 3 (S‘)))] ds] f (t, (o (t)))

lx(t) — y(®) = t—s)~

1 t]a(sv(e()) +h (5.¥(@:))] o
BG L :

(t—s)N=*

lx(¢) = y(O)] < 2F + -9~

[ 1 r [9(5:%(020)) + h (5:%(03))] ds”
I'(Q) Jo

X -

1 (s 7(02)) + (s, 7(03))] 3
Q) J:) ;

ds

[ 1t g (s.x(02())) + h (s, x(03(s)) ¢ |g (5, 9(02())) + h (5, (@3(s)
lx(6) — y(®)] < 2F + r(lq)fol (5. x(e: (t)_s)l-(:x%s )Idler[r(lc)j; |9(Sy¢z S(B)—s)lg: (e s))i
L

lx(t) = y(t)| < 2F +

oot anis) d]+[ 15 m(s) ;
(D) )y (£—8027 1T Ir© SRS e S]

t
1x(®) = y(©)| < 2F + 2 [%]

For allt € R, as lim,_,, v(t) = 0 this gives that lim,_.. sup|x(t) — y(t)| = 0. Thus (1.1)hasa solution and all the solutions

are locally attractive onR .

[V. EXISTENCE OF EXTREMAL SOLUTIONS:

Definition 4.1: (Caratheodory case)A function 7: R — Ris nondecreasing if t(x) < t(y)vx,y €R for which x <
y. similarly T(x) is increasing in x if t(x) < T(¥)Vx,y € R for which x <y.
Definition 4.2: A function p; € BC(R,,R) is called a lower solution of the QFIE (1.1) on R, if the function t —

{pl ) -f (t, P11 (t)))} is continuous absolutely and

1 (g0, h(s, 1 (o
s [F(K) L g(s. Py (wz(s()t))_:)lg p1(@3())) ds] + £ (mios ) it

Again a function p, € BC (R.,R) is called an upper solution of the QFIE (1.1) onR, if the function t— {pl(t) -

f (t. p2 (@1 (t)))] is continuous absolutely and

1 : » h ;
By () 2 [r(g) L g(s 1’2(402(5()3)_*;)15 p2(93(5))) ds] 4 f(t, il (t))) 4.2)
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Definition 4.3:A solution Xy of the QFIE (1.1) is said to be maximal if for any other solution x to QFIE (1.1) one has
2(t) < xy(t) forallt€ R,
Again a solution x) of the QFIE (1.1) is said to be minimal if xy (t) < z(t) for all t € R, where x is any solution of the
QFIE (1.1) onR, . G550
Definition 4.4{10, 41]:A closed and non-empty set K in a Banach Algebra X is called a cone if
i. KX+XcK

i, AKGX for AEX,A20

iii. {—%} N K = 0Where 0 is the zero element ofX.
and is called positive cone if

iv. KoK EXK
And the notation o is a multiplication composition in X
We introduce an order relation < inX as follows.
Letx,y €X thenx <y ifandonlyif y —x € 7. A cone X is called normal if the norm ||+|| is monotone increasing on JE;
It is known that if the cone K is normal in X then every order-bounded set in X is norm-bounded set in X.The details of
cone and their properties appear in Guo and Lakshikantham [35, 36]
We equip the space C(R,,R) of continuous real valued function on R, with the order relation < with the help of cone
defined by,
K = {x € C(R,, R): x(t) = 0Vt € R }(4.4.1)
We well known that the cone K is normal and positive inC(R,, R). As a result of positivity of the cone K we have:

Lemma 4.5[06] Let py, P2, 1. G2 € K be such that p; < quand p; < qzthenpipz < q142-
For any p,p2 € X = C(RLR).p1 £ P2 the order interval [py, p2] is a set inX given by, pupl ={xeXip xS p2}

Definition 4.6{06]:A mapping R: [p1,p2] = X is said to be nondecreasing or monotone increasing if x <y implies Rx <Ry
forall x,v € [pu.p2l
Theorem 4.7[12]:Let K be a cone in Banach Algebra X and let[p;,p.] € X. Suppose thateA,B: [p1,p:] = K be two

operators such that
a. A is Lipschitz with Lipschitz constant &
b. B is completely continuous,
c. Ax+Bx € [p,q) foreachx € [p,q] and
d. A andB are nondecreasing.
Further if the cone K is normal and positive then the operator equation x = Ax + Bx has the least and greatest positive

solutionin [p;,p] whenever aM <1, where M = ||B([py,p2DIl = sup{l|Bxl|: x € [p1, p21}
We assume the following hypothesis

i) The function g and h are caratheodory.
ii) The function x — [x(t) - f (t,x((p1 (t)))} is increasing in the interval

[mincer, p1(t), maxiez. P2 (C)]-

iii) The functionsg,h: R, X R = R, fiR, X R — R are nondecreasing in almost everywhere for £ € R .
iv) The QFIE (1.1) has a lower solution py and upper solution p, on R, with p; < p,.

v) The function m: R, — R defined by

m(t) = |g(s,; (92())) +h(s,p1 (o3 )| + g p2 (@20 + his,p2 (o3 (5)))|isLebesgue measurable.
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Remark 4.4:Assume that the hypotheses(i — v) holds, then
lg(s, x(@2()) + h(s, x(@3(s)))] S m(t), ae.t € Ry

Theorem 4.5:The QFIE (1.1) has minimal and maximal positive solution on R.If the hypothesis(a — e) and(i — v

m is given in above remark, further

Il frry Tl < 1

Proof:Let X = BC(R,,R) and we define an order relation “<” by the cone X given by (4.4). Clearly K is a normal cone in
X. Define two operatorsA, B on X asin previous proof. Then QFIE (1. 1) is transformed into an operator equation Ax+Bx =
x in Banachalgebra X. Notice that (iii) implies A, B: [p1,p2] = K also note that (iv) ensures that p; < Ap; + Bp; and
Ap, + Bp, S py.since the cone K in X is normal, [p, p2is a norm bounded set in X. Now it is shown, as in the proof of
Theorem (1.1) thateAiscontraction mapping. Also we have shown thatB is completely continuous operator

Now hyusing(iii), let x,y € [p1;p2] be suchthat x <y
Ax(®) = f (6.x(p1 ©)) = £ (69(01 ) < AY(O.VEE R,

and.
= tg(s x(@2()) + h(s.x((ps(S)))
Lol r(c) @ -5y
1 rtg(sy(e2())) + s, ¥(e3(5)))
=IO f O il it

From this we conclude that 4, B are non-decreasing operators on [p1. P21

Again definition (4.2) and hypothesis (iv) implies that

h
bt [r(()] g(s,p (fpz(s()t])_"s')l(-‘:: D1 (903(5))) ]*‘f(fr aclips (t)))
1t g(sx(@:())) + h(s,x(93())
< {F(i)f 2 R 3 ds] + £ (t.x(01 ®))

+ h(s,
< [l‘(i;') J’ g(s.p2 ((Pz(s()t))_ s)lg p2(@3(9))) ds] +f (t,‘pz(cpl (t)))

< p,(t),Vt € Riand 2 € [py1, ]

As a result p; (t) < Ax(t) + Bx(t) < pa(0), VL € Ry and z € [p;,p2]
Hence A% + Bz € [py, p21Vx € [p1,p2]

Again M = |B([py, Dl = sup{liBzll: € [p1. P.]}
e {Supt% {r(o J l9(s,x(92(5))) + h(s, x(@3()))] ds} s [P1-Pz]}

(t—s)t*
1 [(t—5) 1
< supir(o[ i L ”m"Ll] SmthmHLl

Since

1
LM < Ll

We apply theorem (4.7) to the operator equation Ax + Bx =x to yield that the QFIE (1.1) has minimum and maximum

T4 nmuLl} <1
positive solution on R,.
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V. EXAMPLE:

Let’sconsiderthe following fractional order QFIE of type (1.1)

e Cost{ x(t) ] s | t t
X = T i) r@Q) |[e7(e2 -2+ x(8t)) T (2t + x(t))]

Seolution:Here

f(etor ) = 51+ ]

SZ
and h(t) = e

t t
9(5x(92()) + ks ¥(gs () = t7(t2 — 2 + x(8t)) T (2t + x(1)

i) Here( = %and @1 (D) =t,92(8) = 8t,p5(t) = tare continuous.

ii)lg (t,x(qoz (t))) -9 (t’y(‘PZ (t)))l o }t7(t1—2t+ x(80)  t7(t2— t

24 v(8t))

e l t2—2+ y(8t) —t? +2— x(8t) | l y(8t) — x(8t) |
“les(e2 -2+ x@D)) (2 -2+ y@o)| ~ lef(t2 -2+ x@0)(t2 -2+ y(86))I

< 8tlx(®) — y(©)

EEIC ®)) - h(ty(es ®))| = l_ t o t

t7(2t + x(®)) t7(2t + y(t))l

x(8) = y(©) |
to(t? =2+ x(80)(t2 -2 + y(8t))|

t 2t + x(t) — 2t — y(t) l
t6(t2 -2+ x(8D))(t2 -2+ y(SC))l

< tlx() — y(@|
i) (ox(or ) 1 (o001 )| =25} - (200

Tl m |l2(t) — y(O)| + y ()] ]} . {[ y(©) m
1[4+ 1x@ - y©I + y© 4+ |2(t) — y(Ol + ly(©)]

21 [ |2(t) = y(©I ]
=i+ 1la+ 2@ -yl + ly@®)l

i [ l(6) =y ]
414+ |x) -y

iv) For hypothesis(d), taking

32
h(t) =—

It is continuous on R .
implies g(s, ¥(92(5))) + h(s, x(93())) < h(®)
That is

t t =%

t7(t2 — 2 + x(8t)) T t7(2t+ x(t)) =%
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v) To show the hypothesis (e)is satisfied
2

t >
tE

U(t)_f(t - {ds: (t-—s)l{ —téj (t—S)lg

t
s2(t — s)$~lds

Tt
2 t{+2
TN+ DE+2)
2

—=0ast—-w

TG+ DE +2)
v(t)is continuous and bounded on R and vanish at infinity.

As all the conditions(a)-(e) are satisfied. Hence by theorem (3.1) above problem has a solution.
REFERENCES:

[1] A. Grana’s and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
[2] A.A.Kilbas, HariM.Srivastava and Juan J.Trujillo, Theory and Applications Fractional Differential equations , North-Holland Mathematics Studies, 204,
FElsevier Science B.V., Amsterdam ,2006, MR2218073(2007a:34002).Zbl 1092.45003.
3] A.AKilbas, J.J. Trujillo, Differential equations of fractional order: Methods, results, Problems, 1. Appl.Anal. Vol.78 (2001), pp.153-192.
4]  A.Babakhani, V.Daftardar-Gejii, Existence of positive solutions of nonlinear fractional differential equations, J.Math.Appl. Vol.278 (2003), pp.434-442.
|5] B.C.Dhage, A Fixed point theorem in Banach algebras involving three operators with applications, Kyungpook Math J. Vol.44 (2004), pp.145-155.
[6] B.C.Dhage , On Existence of Extremal solutions of Nonlinear functional Integral equations in Banach Algebras, Journal of applied mathematics and
stochastic Analysis 2004:3(2004)271-282
7] B.D.Karande, Existence of uniform global locally attractive solutions for fractional order nonlinear random integral equation, Journal of Global Research
in Mathematical Archives , Vol.1, No.8, ( 2013) ,34-43.
8] B.D.Karande, Fractional Order Functional Integro-Differential Equation in Banach Algebras, Malaysian Journal of Mathematical Sciences, Volume 8(S),(
2014), 1-16.
[9] B.D.Karande, Global attractively of solutions for a nonlinear functional integral equation of fractional order in Banach Space, AIP Conf.Proc. *10th
international Conference on Mathematical Problems in Engineering, Aerospace and Sciences” 1637 (2014), 469-478.
[10] D.).Guo and V. Lakshmikantham, Nonlinear problems in Abstract cones, Notes and Reports in Mathematics in Science and engineering, vol.5, Academic
press, Massachusetts, 1988.
[11] Dhage B.C. , A Non-Linear alternative in Banach Algebras with applications to functional differential equations, Non-linear functional Analysis Appl
8.563-575 (2004)
[12] Dhage B.C. , Fixed Point theorems in ordered Banach Algebras and applications Panam Math J 9, 93-102 (1999)
[13] Dugungi. A.Granas, Fixed point Theory, Monographic Math., Warsaw, 1982,
[14] H.M.Srivastava, R.K.Saxena, Operators of fractional integration and applications, Appl.Math.Comput. Vol.118 (2006). pp.147-156.
[15] Hong lingLu,Shurong Sun, DianwuyamandHoushanTeng , Theory of fractional hybrid differential equations with linear perturbations of second type
,Springer
[16] ILPodlubny, Fractional Differential Equations, Academic Press, San Diego, 1993.
[17] 1Podlubny, Fractional differential equations, Mathematics in science and engineering, volume 198.
{18] J. Caballero, B. Lopez and K.Sadarangani, Existence of nondecreasing and continuous solutions for a nonlinear integralequation with supremum in the
kernel, Z. Anal. Anwend. 26(2) (2007), 195-205.
[19] 1. Caballero, J. Rocha, K. Sadarangani, On monotonic solutions of an integral equation of Volterra type, J. Comput.Appl. Math. 174(1) (2005), 1 19-133.
[20] J.Banas, B.C. Dhage, Globally Asymptotic Stability of solutions of a functional integral equations,Non -linear functional Analysis 69 (7), 1945-
1952(2008).
[21] J.BanasB.Rzepka, An application of measures of noncompactness in the study of asymptotic stability, Appl. Math. Lett. Vol.16 (2003), pp.1-6.
[22] K. Deimling, Nonlinear Fuctional Analysis, Springer-Verlag, Berlin, 1985.
[23] K.S.Miller, B.Ross, An Introduction to the Fractional Caleulus and Differential Equations, John Wiley, New York, 1993.
[24] Lakshmikantham and A S Vatsala, Basic theory of fractional differential equations, Nonlinear Analysis, 69(2008), pp.2677-2682.
[25] M.A. Darwish, on a singular quadratic integral equation of Volterra type with supremum, IC/2007/071, Trieste, Ttaly(2007), 1-13.

Volume XII, Issue VII, July/2020 Page No:2313



The International journal of analytical and experimental modal analysis ISSN NO:0886-9367

[26] M.A. Darwish, on integral equations of Urysohn-Volterra type, Appl. Math. Comput. 136 (2003), 93-98.

[27]  M.A. Darwish, on monotonic solutions of a singular quadratic integral equation with supremum, Dynam. Syst. Appl.17 (2008), 539-5

[28]  M.A. Darwish, on monotonic solutions of an integral equation of Abel type, Math. Bohem. 133(4) (2008), 407-420.

[29] M.A. Darwish, on quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (2005), 112-119.

[30]  M.A. Darwish, on solvability of some quadratic functional-integral equation in Banach algebra, Commun. Appl. Anal.11 (3-4)(2007), 44

[31] M.A. Krasnoselskii’s Topological Methods in the theory of nonlinear integral equations, Pergamon Press Book, The Macmillan,New York 1

[32] M.A. Krasnoselskii’s Two remarks on the method of successive approximations, Uspehi. Mat. Nauk. 10 (1955), 123-127.

[33] M.M.El-Borai and M.LAbbas, on some Integro-differential equations of fractional orders involving caratheodory nonlinearities, Int.J. Modern Math, Vol.2
(2007) No.1, pp. 41-52.

[34] M.M.El-Borai and M.1.Abbas, Solvability of an infinite system of singular integral equations, SerdicaMath.J. Vol.33 (2007), pp.241-252.

[35] MM.El-Borai, W.G.El-Sayed and M.LAbbas, Monotonic solutions of a class of Quadratic singular integral equations of Voltra type,
Int.J.Contemp.Math.Sci. Vol.2 (2007), pp.89-102.

[36] Mohamed 1. Abbas, on the existence of locally attractive solutions of a nonlinear quadratic Voltra integral equation of fractional order, Advances in
difference equations, Vol. (2010), pp. 1-11.

1371 MoulayRchidSidiAmmi, El Hassan El Kinani, Delfim F.M. Torres Existence and Uniqueness of solutions to a functional Integro-Differential
Equation,Electronic Joumal of Differential equation(2012).

[38] R.P.Agarwal, Y.Zhou, Y.He, Existence of fractional neutral functional differential equations, Comput. Math App. 59(3),1095-1100(2010).

[39]  S. Chandrasckhar, Radiative Transfer, Dover Publications, New York, 1960.

[40]  S. Djebali, Z. Sahnoun, Nonlinear alternatives of Schauder and Krasnoselskii’s types with applications to Hammerstein integral equations in L1 spaces, J.
Differential Equations249 (2010), 2061-2075.

|41]  S.Heikkila and V. Lakshmikantham, Monotone iterative Techniques for Discontinuous Nonlinear Differential Equations,Monographs and Textbooks in
Pure and applied mathematics, vol.181 ,Marcel Dekker, New York,1994.

[42]  S.Samko, A.A Kilbas, O.Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Amsterdam;1993.

[43] X.Hu,J.Yan, The global attractivity and asymptotic stability of solution of a nonlinear integral equation, I Math.Anal. Appl.., 321(2006) pp.147-156.

Dr. Anil Chidrawai
WC Principal
A.V. Education Society's
Megloor Coflege, Deglo~ Dist.Nanded

Volume XII, Issue VII, July/2020 Page No:2314



