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1. INTRODUCTION:

Fractional Calculus is a generalization of ordinary differentiation and integration to
arbitrary order .The subject has its origin in 16" century. During three centuries, the
theory of fractional calculus developed as pure theoretical field, useful omly for
Mathematicians [26] Quadratic functional integral equation has newly received a lot of
attention and establishes a meaningful branch of nonlinear analysis. For examples,
quadratic integral equations are often applicable in the theory of radiactive transfer,
kinetic theory of gases, in the theory of neutron transport and in the traffic theory.
Numerous research papers and monographs devoted to quadratic differential and integral
equations of fractional order have appeared (see [1-3, 16, 4, 6-7, 12-24]. These papers
contain different types of existence results for equations of fractional order. Here we are
concerned with the existence of solution for fractional order quadratic functional integral
equation also locally attractive solutions. The existence of the maximal and minimal
solution of following QIE will be proved.

2. Statement of the Problem:

Leta, € (0,1)and Rdenote the real numbers whereas R, be the set of nonnegative
numbersie. R, =[0,0) Cc R
Consider the following quadratic integral equations of fractional order

[ (ffx(s) 1 fg(s,x(s)) o
x(t)—[r(a)  G-9)e ds][q(t)—f—r({)"a &=t ds]‘v’tc R 210
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Whereq: Ry = R, f(t,x) =f: Ry XR = R,gt,x)=g:Ry XxR->Rand By a
solution of the (2.1) we mean a function x € BC(R, ,R) that satisfies (2.1) onRy.
Where BC(R.,, R)is the space of continuous and bounded real-valued functions defined
onR,

In this paper, we prove the locally attractive of the solutions for QIE (2.1) employing a
classical hybrid fixed point theorem of B.C.Dhage [4]. In the next section, we collect
some preliminary definitions and auxiliary results that will be used in the follows.

3. Preliminaries:

Let X = BC(R, ,R)be Banach algebra with norm [I.]| and letQ be a subset of X. Let a
mappingeA : X —» X be an operator and consider the following operator equation in X,
namely,

x(t) = (Ax)()t € R4 (3.1

Below we give different characterizations of the solutions for operator equation (3.1)
on Ri.

Definition 3.1[17]: The solution x(t) of the equation (3.1) is said to be locally attractive
if there exists an closed ball B.[0] inBC(R4,R) such that for arbitrary solutions x =
x(t) and y = y(t) of equation (3.1) belonging to B,[0] n Qsuch that

lim (x(6) - y(®) = 0 ' (3.2)

Definition 3.2[17]: Let X be a Banach space. A mapping A : X — Xis called Lipschitz if
there is a constanta > 0 such that||lAx — Ayl < allx — yll forallx,y € X Ifa < 1 then
Ais called a contraction on X with the contraction constant & .

Definition 3.3: (Dugundji and Granas [12]). An operator A on a Banach space X into
itself is called Compact if for any bounded subset S of X, A(S) is a relatively compact
subset of X. If A is continuous and compact, then it is called completely continuous on X.

Let X be a Banach space with the norm Il lland LeteA : X — Xbe an operator ( in general
nonlinear). Then A is called

(i) Compact if A(X) is relatively compact subset of X;
(iD) Totally bounded if A(S)is a totally bounded subset of X for any bounded
subset S of X

(iii) ~ Completely continuous if it is continuous and totally bounded operator on X.

It is clear that every compact operator is totally bounded but the converse need not be
true.

The solutions of (2.1) in the space BC(R;,R)of continuous and bounded real-valued
functions defined on®R, . Define a standard supremum norm II. I} and a multiplication “.”
in BE(R4,R)byllxll = sup{lx(D)]:t € R, }(3.3)

(@) =x@)y(t) teR, (3.4)

Clearly, BC(R, ,R)becomes a Banach space with respect to the above norm and the
multiplication in it. By LY(R,,R) we denote the space of Lebesgueintegrable functions
on R, with the norm||. || ;2 defined byl x|l;2 = f:o{x(t)ldt (3.5)

Denote by £1( a, b)be the space of Lebesgue-integrable functions on the interval (a, b),
which is equipped with the standard norm.
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Let x € £1( @, b) and let B > 0 be a fixed number.
Definition 3.4[3]: The Riemann-Liouville fractional integral of order £ of the function

£(£) is defined by the formulal® £ (€) = 2= J; (T_%ds t € (a,b) (3.6)
Where I'(8) denote the gamma function.
It may be shown that the fractional integral operator 1 transforms the space L1 a, b)
into itself and has some other properties (see [18-25]) ;
Definition 3.5: A set AC [a,b] is said to be measurable if m A =m.,A. In this case we
define mA , the measureof Aasmd =m' A = m,A
If A,andA, are measurable subsets of /a ,b] then their union and their intersection is also
measurable.
Clearly every open or closed set in R is measurable.
Definition 3.6:Letf be a function defined on [a,b]. Then fis measurable function if for
each a € R, theset { x: f(x) > a} is measurable set .
i.e. f is measurable function if for every real number athe inverse image of (@ ,0) is an
open set .
As (a , ) is an open set and if f is continuous , then inverse image under fof (@ , 00) is
open Open sets being measurable , hence every continuous function is measurable.
Definition 3.6:A sequence of functions { f;, } is said to converge uniformly on an interval
[a, b] to a function fif for any € > 0 and for all x € [a, b] there exists an integer N
(dependent only on € ) such that for all x € [a, b]

) —f(x)l<e Yn=2N
Definition 3.7: The Family F is Equicontinuous at a point X, € X if for every £ > 0 there
exists 8 > 0 a such that d(f (x,), f(x)) < & for all f € Fand all x thatd (xg,x) < 4.
The family is point wise equicontinuous if it is Equicontinuous at each point of X.
The family is uniformly Equicontinuous if for every £ > 0 there exists § > 0 a such that
d(f (x1), f(x2)) < & for all f€ Fand all x; ,x; € X such thatd(x, ,x;) < 8.

Theorem 3.1: (Arzela-Ascoli theorem (7)): If every uniformly bounded and equi-
continuous sequence {f,,} of functions in€(J, R), then it has a convergent subsequence.
Theorem 3.2[7]: A metric space X is compact iff every sequence in X has a convergent
subsequence.

We employ a hybrid fixed point theorem of Dhage [4] for proving the existence result.

Theorem 3.3 :( Dhage [4]). Let S be a closed-convex and bounded subset of the Banach
space X and leteA,B: S — X be two operators satisfying:

(a) A is Lipschitz with the Lipschitz constant k,

(b) B is completely continuous,

(¢) AxBx € Sforall ,x € Sand

(d) Mk < 1WhereM = |[|B(S)|| = sup{l|Bx|:x € 5}
Then the operator equation AxBx = xhas a solution

4. Existence results:

Definition 4.1[7]: A mapping g: R, X R — Ris said to be Caratheodory if

1. t = g(t,x)is measurable for all x € R , and
2. x — g(t,x) is continuous almost everywhere for t € R,
Again a caratheodory function g is called £*-Caratheodory if
3. for each real number r > 0 there exists a function h, € L'(R,,R) such that

lg(t,x)] € h.(t)ae. t€R, forallx € Rwith|x| <r
Finally, a Caratheodory function g(t, x) is calledL} — Caratheodory if
4. there exist a function h € L*(R,,R) such that |g(t, x)| < h(t)
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aec.teR, forallx R
Throughout this paper, we assume the following Hypothesis

(H,)The function f: R, X R —» R is continuous and bounded with bound

F = sup |f (t, x)|there exists a bounded function [ : R, — R, with bound L Satistying
“EER, xR

(6, — it Y] < l(t)”(‘:;;‘)lx ylt € R, forallx,y € R

(H,)g: R, — R is continuous function on R,; alsolim; e q(t) =0

(H3)The functionsf, g: R, X R - Rsatisfy caratheodory condition (i.e. measrable in ¢ for
allx € Rand continuous in x for allt € R,) and there exist function hy, h; €
LY(R,,R) Such thatf(t,x) < hy (t) and g(t,x) < h, (OV(L,x) ER, X R

(H,)The uniform continuous function v;: Ry — Ry fori= 1,2defined by the formulas

h h :
v (6) = f @ 1(§3 =i4l8 vz(t)—-J. @ 2(;2_< ds

is bounded on R, and vanishes at infinity, that is,lim,_., v; (¢t) = 0

Remark 4.1: Note that if the hypothesis(H,)and (Hs)hold, then there exist constants
K;>0 and K; ,K3 > 0 such that: K; = sup{q(t):t € .’R+}

sup j h () ds Kz = sup f by (5)

SET@) )y G5 ST ) €=

Theorem 4.1: Let the assumptions [ (H,)-(H,)] are satisfied. Furthermore ifL(K; +
K3) < 1, where Ky.K,and K are defined remark (4.1), Then the equation (2.1) has a
solution in the space BC(R, ,R)and solutions of the equation (2.1)are locally attractive
onR, .Moreover (2.1) has maximal and minimal solutions.

Proof: By a solution of the (2.1) we mean a continuous functionx: R, — Rthat satisfies

(2.1)onR,.

Let X =BC(R,,R)be Banach Algebras of all continuous and bounded real

valuedfunction on R, with the norm|jx|| = sup fx (@] 4.1)
teER,

We show that existence of solution for (2.1) under some suitable conditions on the
functions involved in (2.1).
Consider the closed ball B,.[0] in X centered at origin 0 and of radiusr, where
r= KZ{KI +K3} >0
Let us define two operators A and B on B,.[0] by

1 i hx(s))
@) Jy = )c ds (4.2)

Ax(t) =

tg(sl x(s))
T L, (e =5p

and Bx(t) = {q(t) e ds] ViER, (43)
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The function g is continuous on R , the function Bx is also continuous and bounded in
view of hypotheses (H; — H3)The mapping A is well defined (Since the hypotheses
(H,)) holds)and the function Ax is continuous and bounded onR ;.

Therefores4 and B define the operators A,B: B,[0] = X.we shall show that A andB
satisfy all the requirements of theorem (3.3) on B,.[0].

Step I: Firstly, it is easy to show that A is Lipschitz on . Letx,y € X be arbitrary, and
then by hypothesis (Hz), we get

t t
|Ax(t) — Ay ()| = Il"(loc),[J f(t.x(s)) d 1 f(t,y(s)) dsl

G- T T@) t-9°

TRyt 1
% r(ol:)J’0 nEal (tx()) = f(t.y(s))|ds

rMa+1) 1 (¢ 1
O« T(@)J (t_s)l-al x(t) — y(t) lds

<I(®)

ra+1 5 i
< l(t)-%t;—)i x(t) - y(t)lr(aof0 G—sie®

ra+1) 1 [-9%
= l(t)w—‘l x(t) — y(t)lF@[ = L
Ma+1 g
<1070 20 - YO lrs g
< L| x(t) — y(t) [forallt € Ry (4.4)

Taking supremum over t
lleAx — Ayll < Lllx = yllforall x,y € B.[0] (4.5)

Gives that A is Lipschitz on X with the Lipschitz constant L.
Step II: Now we show thatB is completely continuous operator onB,{0].

Firstly we show that B is continuous on B, [0].

Case I: let us assume that, ¢ € [0, T] then evaluating we obtain the following estimate

|(Bx)t — (By)t] <

£ g(s,%() 1 [t g(s,y()
10 +55), coo=2 = 1O T fo =)< ds\

1 (Tglx(s) , 1 (T96.y(6))
T Jo =)' T@)Jy (t—s)¢

|
<
I

ds|
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1 [[Tlg(s,x(s))—g(s,y (S))l ]
T f DI

1 [ TW]T (_hz,f)
=Tl ET-97F ds]

_1_W11'F(h215) z ]
Sr@)[ e

w;!' (hZJ E) 14

Where wy (QPE) o Sup{lg(s x) Q(S;J’)l SE {0 T] x,y€ [—?",T’l, fx= y] = 6}
Therefore, from the uniform continuity of the function g(t, x) on the set [0,T] x [—r.7]
.we derive that wi (g, €) — Oas ¢ = 0.

Case II: Suppose that t = T there exist T > 0 and let us fix arbitrarye > 0 and take
x,y € B,[0] such that||x — y|| < ¢Then

[(Bx)t — (By)t] < Iq(t) 5 t g(s,x(s)) 1 [tg(sy(s) s |

@) =92 719w ), oo ®

|1 (fabx6) 1 ‘9(s,y())
T Jo =52 TWQJy &=

IA

1 [r¢lgCs x(s) tlg(s, y ()
<ol G [ fner e

hy(s) £ hy(s)
- I U (&= 5)1“ - o (E=s)¢ ds]

U hy (s) ]
STl T-9r7
2 v,(t)

oyt 4.7
Q) (&0
Hence we see that There exists T > 0 s.t.
er'()

vz(t)<—f ort>T

Since & is an arbitrary,
from (4.7) we derive that
(Bt - (By)tl<¢ (4.8)

Now combining the case I and II, we conclude that the operator B is continuous operator
on closed ball B,[0] in to itself.
Step ITI: Next we show that Bis compact on B;.[0].
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(A) First prove that every sequence{Bx,} in B(B,[0]) has a uniformly bounded
sequence in B(B,.[0]). Now by (H3) — (H3)-(H,)

[(Bxp)t] =

a®) + 1 tg(spxn(S))'dsl

r'({) Jo (t_5)1-<

1 [“lg(sxa(s))I
i(an)ﬂ < Iq(t)l o F({)J; (t == 5)1"'(

ds

1 L hz (3)
(B < 1901+ 15 | gy @S
v2(t)

[(Bx)t] < lq(O] + T

[(Bx)t] < Ky + K3Vt € Ry, (4.9)

Taking supremum over t, we obtain [|Bx,|l < K; + K3vn €N

This shows that {Bx,,} is a uniformly bounded sequence inB(B.[0]).

(B) Now we proceed to show that sequence{Bx;, }is also equicontinuous.

Lete > 0 b be given. Sincelim,_,o q(t) = 0 there is constant T > 0 such that
lgit)i<eg/2forallt =T

Case I: Ift; , t; € [0, T]then we have

|(Bxn)t; — (Bxn)til

1 % g(s,xn(s)) 1 (" g6xa(s)) ]
s

Sl‘*“z“r(o oo dadnu U oy e

141
1 (e laG a1 [ gl
<) = a5 |G 4 T f D ds‘
0
1[4 1t hy(s)

B e e, G Ok B

dsl

< lg(tz) —q(t )l + o)

2 hy(s) B hy(s) d
0 (t, _5)1_< 2 0 (t; _5)1_< 5

< la(t2) = (e g 1va(t2) = v2(t:)1(410)

from the uniform continuity of the function q(t),v(t) on[0,T], we get
|(Bxp)t; — (Bxp)ty| = 0 ast; = &

CaseII: Ift;, t, 2T then we have
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|(Bxy)t, — (Bxp)t:]

< |lq(ty) +

1 (gl o 1 (% g(5x(s) l
AN R T L e e At oY M o 1

< |q(t;) —qt)l+ ds

1 f FICERG) PR W AN PICERO)
I (t; =) r') £ (i —8)=¢

B T [g(s,xn(s))l l l f1 |g(s, 24(s)) 1
<lat) -9l + 75 | Dlas|+ o [ Las

(& =)™ (t; —s)r—¢
t t1)
< lote)~q(e)l + 5+ i 045
= East1 =y tz. (4.11)

Case III: Ift, , t; € R, With t; <T <t then we have

[(Bxn)ty — (Bxn)ty | < [Bxn(tz) — Bxn(T)| + [Bxn(T) — Bxp(t: )] (4.12)

Now if t; — t, thent; 2T andT— ¢,

Therefore,|Bx, (t2) — Bxn(T)| = 0,|Bx,(T) — Bx,(t1)| = 0

and so |(an)t2 - (an)tl l -0 astl i tz for all t,%; & R+(413)

Hence {Bx,,} is an equicontinuous sequence of functions in B(B; [op.

So applying Arzela-Ascoli theorem (see [9]) we say that {Bx,}has a uniformly
convergent subsequence in B(B,[0]) and consequently B(B,[0]) is a relatively compact
subset of X. This shows that B is compact operator on B,.[0]. Hence by Dugungi B is
completely continuous on B,[0].

Step IV: Next we show that AxBx € B,[0] for all x € B,[0] is arbitrary, then

[Ax(©)Bx (D) < |Ax(OlIBx(D)]

f(t x(s)) 1 [t g(s,x(s))
ecaBle = Ir‘(a:) —9e SH[““’*F(O o (t-s>1-<‘d5H

hy(s) ha(s)
[r(a)f C-s)a ]‘ “"*r«)f G

vy (t)
*T@

%] (t)]
r')

< K,[Ky + K3]=r foralltinR,(4.14)

2lla! +
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Taking the supremum over t, we obtain || AxBx (< r forall x € B.[0] .
Hence AxBx € B,.[0]

Hence hypothesis (c) of Theorem (3.3) holds.

Also we have M =[i B(B.[0]) ll=sup{ll Bx |I: x € B.[0]}

t
1 )
= sup{ Sup {lq(®Ol + 09 I‘(gt(s— Jgfzz,] ds}:x € B.[0] }
=0 o

t
2 B ML R
= suplzup (401 + 5 Df g dshex € B [0])

220 < g + Kq(4.15)

s sup{la(Ol & sul en <

tz0 tz0

Therefore ML =L (K; + K3) <1

Now Appling Theorem 3.3 to shows that (2.1) has a solution onR .
LOCAL ATTRACTIVITY OF THE SOLUTIONS

In this section we show the local attractivity of the solutions for (2.1).

Let x and y be any two solutions of the (2.1) in B,.[0] defined on R, . Then we have,

1 § g
() —y(®)| = IF@ ), é(igil ds [q(t)+

1 f(ty(s)
@)y G—9)re

1 ‘gﬁxﬁnd]

T@QJ, t=s)2 "

1 tg@J&Dd]l
o

ds [q(t) + T, Gt

x(®) —y(@®)| <

| 1 (ff(tx() 1 ‘g&xﬁDd”
IF@ J, t=s)t-e TQ) Jo E=5)1—3 "]
1 [t f(t.y(s)) 1 (tg(s,y(s)
T@ )y G-se ["(t)’“rco ; (t—s)i-f‘““

ds {q () +

| 1 [ f(tx(s)

r@) J, t—or< a5

lx(0) = y(®)| <

1 [flglsx(s))l
[+ 15 [ 425 ds}
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[[loerenl,]

1
e =rr

(t—s)t-¢

| 1t f(tys)
IF(a)L ds

1 [t h(s) 1t hy(s) ]
lx(®) = y(@®l < F(a)ju = s)ie ds [Iq(t)l +1"(<)J; (tr_s)l_g ds
g s W 1 ha(s)
i | ds[IQ'(t)H-F(O [ (t_s)i_gds]
G ; t hl(S) & hz(s)
lx(t) — y () SZF(Q)L G=s)ie ds [tq(t)l+r(0 G ds]
() - y(©)] < 222 [lg0)] + 73] (4.16)

For allt € R, .Sincelim;.oq(t) =0 andlim;,e v(t) =0 this gives that
limg_e suplx(t) = y(t)| = 0. Thus the (2 .1) has a solution and the solutions are locally
attractive on R4

5. Existence of Extremal Solution:

In this section we show that given equation (2.1) has maximal and minimal solutions:

Definition 5.1: (Caratheodory case) A function 7: R — R is nondecreasing if 7(x) <
7(y)¥x,y € R for which x < y.similarly 7(x) is increasing inzxift(x) <t(y)¥x,y €ER
for which x < y.

Definition 5.2: (Chandrabhan) A function f:R, X R — Ris called chandrabhan if
i) The function (x,y) = f(x,y,z) is measurable for eachz € R
ii) The function z — f(x, y, z) is non-decreasing for almost each (x,y) E R,

Definition 5.3[9, 28]: A closed and non-empty set K in a Banach Algebra X is called a
cone if

i K+KcXK

ii. AKEK for A€eK,A=0

iii.  {—=%} N XK = 0 where 0 is the zero element of X.
and is called positive cone if

iv. KoK X
And the notation o is a multiplication composition in X.
The Details of Cones and their properties may be found in the monographs like Guo and
Lakshmikantham [9] and Heikkila and Lakshmikantham [28]
Definition 5.4: A solution x,, of the integral equation is said to be maximal if for any
other solution x to the problem x(t) < xy,(t) tER,

Again a solution x,, of the integral equation is said to be minimal if for any other solution
x to the problem x, (t) < x(t) teER,
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Definition 5.5[5]: A mapping R: [p1,p2] — X is said to be nondecreasing or monotone
increasing if « < y implies Rx < Ry forall x,y € Ipup2]

Theorem 5.1: Let K be a cone in a banach algebra X and let [? ; _Dg] ex

Suppose A, B : [ X, x ] = Kbe two operators such that

a) Ais lipschitz with Lipschitz constant a

b) Bis totally bounded

) x,;Bx; € [%,x] ¥x; . %z €[%,x]

d) AandB are nondecreasing

further if the cone X is positive and normal then the operator equationAxBx = x has a
least and a greatest positive solution in [ X , x Jwhenever aM <1

Where M = ||[B[%,x 1||sup{ ||Bx : x € [X,x ]|}

we equip the space BC(R,,R) with the order relation < with the help of the cone
defined by

K ={x€CR,R):x(t) =0Vt ER,}

Thusx <x iff x(t) <x(t) Vx ER,

It is well known that the cone K is positive and normal in BC(R.,R)

We consider another hypothesis

(Hg) Suppose f(t,x) =f:RyXR—->R,g(t,x) = g: Ry XR > Rare Chandrabhan
(H-) There exists a function h € L'(R, ,R) such that

lg(t,x)| < h(t,x)Vt € R andx € R

(Hg) The given problem has a lower solution x and upper solution X withx < X

holds if L(Kq + K3)<I

Theo 5.2: Suppose that the Hypotheses(Hy) - (Hg) are holds .Then problem (2.1) have a
minimal and maximal positive solution on R,

Proof: Let X = BC(R,,R) and define an order relation< by the cone ¥ given by (5.3)
clearly € is normal cone in X. Define the two operators A and B on X by (4.2) and (4.3)
resp. then (2.1) is equivalent to operator equation AxBx=x.Now it is shown as in the
proof thateA is Lipchitz with Lipchitz constant L and B is completely continuous operator.
Let x;x, € [%,x]s.t x; < x;Then by hypothesis (Hg)

Flan) , 1 (f(6x6)

1
Y= =
Axq () F(a)L t—s)i= ds < @) ), C=s)@ ds = Ax,(t)
forallte R,
and

1 [tg(sx:(5))
Bx; () = [q(t) + T )y =)< ds l < [q(t) iE
= sz (t)
So A and B are non decreasing operator on [X , x|
Now

£g(s,x2(s)) ds]
F() )y =)'

20 =1y ), G-9= ds["(‘) YT G
1" fleads)) 1 rtg(s,x(s)
0 515, et oo 00+ 5, 65 |

1) 1 rfg(s.x(s)
x() < F(a)J;, i ds[q(t)+r(o e ds]

x(t) < x(t)forall x€[X,x]andt € R,

1t f(8x) 1 (“9(sx()) ds]
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Hence AxBx € [X,x Jforall x€[X,x]

M= ||B[%, |

< suplq(®)| +

| 1 [fg(sx(s)) dsl
Ir@Jo t—s)*¢

1| lgGsx(sDi
< sulg©1 + | [ ASE 0 s |

Y hy(s)
@) J, (t— s

LM <LKy + K3) <1

< suplq(®)| +

Thus operator equation has maximal and minimal solution in [J? : _Jg] ;
Thus given problem have maximal and minimal positive solutionon R .

6. Consider the following quadratic functional Integral equation of type (2.1)

O e e ) ds”l 1.t (=52

i = [I‘(a) oo F||lET T ), Fo 201 ds]we oy

Herea = ég’ =i flt.x())=e"x(@®) g(s.x(s)) = mq(t) =2 %

(3)Now|f (£, 2(®)) = f (&, y(D)|
= et x(t)} —{e~* y(OHU

= le~{x(t) — yWI

< le~ljx(0) — y(0)I

< k(®)iz@®) = y(©)|

< Fla(t) —y(®)I

Since k(t) = e~* say which has bound F on R,.
&
(Hz) q(t) = Twis continuous on R, and }im g(t) =0

(#H3) Take hy (t) = ESE , it is continuous on R, .

Implies f (t,x(t)) < hy(t)

Thatis e~“x(t) S?s

Take hy(t) = t—ss , it is continuous on R .
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Implies g(t, 2(t)) < ha(t)

5

\ 1
e e W i
Thatis oo =5

b h(s) WS L AT
(g{‘4) U1(t) = Jg —t—_T)ﬁ' ds = I ft_—_s')l_‘“— ds = C_ZL __—_—(t—S)i_a ds

0

1
et B o s s e =
= g6 =5) s t2 —a t2| —(a+1)

t 1[ (t—9)° t 1[(t - s)*+? t 1 5 ra+l
z). [——_] [*——D—ﬁ[ “T@r D

i
= s 0ast— o
ti%(a+1)

5
: £ ha(s) o 1ff s
Again vy(t) = L Et—:?ﬁ_—c ds = L =) C ds = a 3 DI ds

1t i 1 -  1fc-971] 1 gi+1
= EEJ;SI(t—s)c 1 ds =t—3[s. = ]0 F[-({-}'l)]u— -t—g[o—'"-———_((_l_l)}
1] o2 i

v;(t)is continuous and bounded on R, and vanish at infinity.
It follows that all the conditions (#)-(#s) are satisfied. Thus by theorem (4.1), above
problem (6.1) has a solution R,.
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