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1. Introduction:

Fractional Calculus is a generalization of ordinary differential and integration to
arbitrary (non-integer) order. The subject has its origin in the 1600s.Durin g three centuries,
the theory of fractional calculus dev eloped as a pure theoretical field, useful only for
mathematicians. We can -see that the tremendous development of theory of fractional
calculus occurred in last 3-4 decades Fractional differentiation proved very useful in
various fields of applied sciences and en gineering. The “bible” of fractional calculus is the
book of Samko, Kilbas and Marichev [34].Several definitions of fractional derivatives and
integral are available in the literature, including the Riemann- Liouville, Caputo derivatives
and integral [1, 2, 3, 9, 11-13]. The combination of fractional calculus and integral
equations may introduce more effective tool for analysis.

Fractional differential and integral equations have also been studied by several researchers.
This class of equation involves the fractional derivative and integral of an unknown
function. Some recent results on fractional order differential and integral equations can be

~

found in a series of papers (see[7,14-17]).
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In this paper, we present the existence results along with the locally attractivity and
extremal solutions forfractional order nonlinearfunctional integro-differential equation in

Banach Algebras. Finally, we present an example illustrating the applicability of the

imposed conditions.

2. Statement of the Problem:

Let {,5 €(0,1) ,R denote the real numbers whereas R, be the set of nonnegative
numbersi.e. R, = [0,0) C R

Consider thefractional order nonlinear functional integro-differential equation

DOx(t) — ZR_ IPrhy(t, x(y (1))
g f(t.x(a(t)) 1 = g(tx(®).1Px(x(0)) v teR,(21)

x(0)= 0 and D%x(0)=0

where 0<{,6<1,0<{+8<2,flt,x) = f:R, x R—> R\{0} g(t,x,y) =
gR.,xRxR-R and hipRy s R R with
hi(00) = 0,k=12,....... n YR R,

Dldenotes R-L fractional derivative of order { and /”denotes R-L fractional integral of

order p.

By a solution of the (2.1) we mean a function x € BC(R, ,R) that satisfies (2.1) onR, .
Where BC(R, ,R)is the space of continuous and bounded real-valued functions defined
onR,.

Applying a hybrid fixed point theorem [5], the existence results forFIDE (2.1) will be
obtained.

In section 3 we recall some useful preliminaries. In section 4 we study the existence the
solution of the initial value problem (2.1), while in section 5 we deal with the existence of
extremal solution of the initial value problem (2.1).Example illustrating the obtained

results are presented in section 6.
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3. Preliminaries:
Let X = BC(R, ,R)be Banach algebra with norm Il. Il and letQ be a subset of X. Let a
mapping A : X = X be an operator and consider the following operator equation in X,
namely,

x(t) = (AxX)(t), tER, {3.1)

Below we give different characterizations of the solutions for operator equation (3.1)

on R,.

We list some precise definitions in the sequel.

Definition 3.1[22]: The solution x(t) of the equation (3.1) is said to be locally attractive
if there exists an closed ball B,[0] in BC(R, ,R) such that for arbitrary solutions x = x(t)
and y = y(t) of equation (3.1) belonging to B,[0] n Qsuchthat

li_r’nm(x(t) —y(t)) =10 (32)

Definition 3.2[22]: Let Xbe a Banach space. A mapping A * X = X is called Lipschitz if
there is a constant @ > 0 such thatllAx — Ayl < allx — yll forall x,y € X.

If & < 1 then A is called a contraction on X with the contraction constant .

Definition 3.3: (Dugundji and Granas [18]). An operator A on a Banach space X into
itself is called Compact if for any bounded subset S of X, A(S) is a relatively compact
subset of X. If A is continuous and compact, then it is called completely continuous on X.

Let Xbe a Banach space with the norm ||. [land Let A : X — X be an operator (in general
nonlinear). Then A is called

(i) Compact if A(X) is relatively compact subset of X

(i1) Totally bounded if A(S)is a totally bounded subset of X for any bounded
subset S of X

(iii)  Completely continuous if it is continuous and totally bounded operator on X.

It is clear that every compact operator is totaily bounded but the converse need not be true.
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The solutions of (2.1) in the space BC(R, ,R) of continuous and bounded real-valu
functions defined on R . Define a standard supremum norm il and a multiplication “.”

in BC(R, ,R)byllxll = sup{lx(t)]:t € R, }(3.3)

(xy)(t) = x(t)y(t) tER, 3.4

Clearly, BC(R, ,R)becomes a Banach space with respect to the above norm and the
multiplication in it. By LY( R, ,R) we denote the space of Lebes gueintegrable functions
on R, with the norml|. ||z defined by

(o u [0 Ix(0)ldt (35)

Denote by £L*( a,b) be the space of Lebes gueintegrable functions on the interval (a, b),
which is equipped with the standard norm. Let x € LY( a,b) and let § > 0 be a fixed

number.

Definition 3.4[21]: The Riemann-Liouville fractional integral of order S of the function

x(t) is defined by the formula:

1 k- x(s)
B L
1Px(t) = X0 fo (t—s)i‘ﬁds t€ (a,b) (36)

Where [() denote the gamma function.

It may be shown that the fractional integral operator [ B ¢ransforms the space L'( a,b) into
itself and has some other properties (see [12-19])

Definition 3.5: Aset AC [a,b] is said to be measurable if m A = m,A . In this case we
define mA , the measure of A as mA=m A = mA

If A;and A; are measurable subsets of [a ,b] then their union and their intersection is also
measurable.

Clearly every open or closed set in R is measurable.

Definition 3.6: Letf be a function defined on [a,b].Then f is measurable function if for
each @ € R ,theset{ x:f(x) > a} is measurable set .

ie. f is measurable function if for every real number a the inverse image of (a ,) is an

open set
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As (& ,o0) is an open set and if f is continuous, then inverse image under fof (o,
openOpen sets being measurable , hence every continuous function is measurable.
Definition 3.6:A sequence of functions { f;, }is said to converge uniformly on an interval
[a,b] to a fundtion f if for any € > 0 and for all x € [a,b] there exists an integer N
(dependent only on € ) such that for all x € [a, b]

lfx) —f(x)l< e Yn=2N
Definition 3.7: The Family F is equicontinuous at a point x, € X if for every € > 0 there
exists 8 > 0 such that d(f(xp),f(x)) < eforall f€ Fand all x that d(x,,%) < 6.
The family is point wiseequicontinuous if it is equicontinuous at each pointof X.
The family is uniformly equicontinuous if for every & > 0 there exists § > Oa such tha
d(f(x,).f(xp)) < e forallf € Fandall x; ,x; € X such thatd(x,,x;) < 6.
Lemma3.1[17]:letg> Oand x € c(0,T) N L(0,T) Then we have

dq (19 D (0)
19— x(t) = 2(t) — i
q
dt Zjﬂ

Tg—j+ 1)

wheren —1 < g < 7.

Theorem 3.1: (Arzela-Ascoli theorem [6]): If every uniformly bounded and equi-
continuous sequence {f,} of functions in C(R, ,R), then it has a convergent subsequence.
Theorem 3.2[6]: A metric space X is compact iff every sequence in X has a convergent
subsequence.

We employ a hybrid fixed point theorem of Dhage [5] for proving the existence result.
Theorem 3.3 :( Dhage [5,16]):Let S be a non empty, convex, closed and bounded subset
of the Banach space X and let A, C: X = X and B: S — X are two operators satisfying:

a) A and C are Lipschitzian with lipschitz constants ¢, 7 respectively.
b) B is completely continuous, and

c) x= AxBy+ CxeSforaly €S

d) EM+ n< 1 whereM = 1B(s)|l = sup{liBxll:x € S}

Then the operator equation X = AxBy + Cx has a solution in 5.
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4, Existence resulfts:

Definition 4.1[6]: A mapping g: R, x R — Ris said to be Caratheodory’ if

1. t - g(t,x)is measurable for all x € R, and
2. x = g(t,x) is continuous almost everywhere for t € R,
Again a caratheodory function g is called L1-Caratheodory if

3. for each real number r > 0O there exists a function hTEL1(32+,.’R) such that

lg(t.x)| < h(t)ae t € R, forall x € Rwithix| <r
Finally, a Caratheodory function g(t, x) is called ,Cng — Caratheodory if
4. there exist a function h ELl(R_,_,R) such that |g(t,x)| < h(t) ae. t € R, for all
o o
For convenience, the function # is referred to as a bound function of g.

Definition 4.1.1[7] :A mapping g: R, x R, x R x R — R is Caratheodory if:

i) (t,s) = g(t,s,x,y) is measurable for each x,y € R and
ii) (x,y) = g(t,s,x,y)is continuous almost every where for t € R, .

Furthermore a Caratheodary function g is L1 —Caratheodary if:

iii) For each real number 7 > 0 there exists a function h, € L(R, x R, ,R) such
that|g(t,s,x,y)| < h,(t,s)a.e. t€R, for all x,y € R with |%l,, < r and
Iyl =1,

Finaily a caratheodary function g is L} —caratheodary if:

iv)  There exists a function h € VLR, x R, ,R) such that lg(t,s,x,y)| <
h(t,s), a.e. teR, forallx,y € R

For convenience, the function h is referred to as a bound function for g.

Lemma 4.1: Suppose that {,8 € (0,1) and the function f,g,hy,k = 123,...nsatisfying
FIDE (2.1). Then x is the solution of the FIDE (2.1) if and only if it is the solution of

integral equation
x(t)

Page |303 Copyright © 2019Authors



Our Heritageuae careLiged)
1 88N : 0 474-90 30 Vol-68, Special | ssue-12

National Conference on Recent Trends in Physics Chemistryand
Mathematics{ RTPCM-2020)
Heldon 4th February 20 20 Organisedby: Department of Physics,
Chemistry and Mathematics, Sunderrao SclankeMahavidyalaya,
Majalgaon, MS

Itg (t, x(u(t)), IPx((t)

_ 0 ‘ ) S
<)) e | =m0 ;I me(e. 2y (9) (

forall t€ R, and {,6 € (0,1).

Proof: Applying the Riemann-Liouville fractional integral of order { to both sides of (2.1)

we have

. ds {D‘Sx(t) — 3 1Beh (t,x(y (D)) ¢

e L p
" Fitx(a(0) }0 - g (elu(e)1x(e19)

DOx(t) =37 IBeh, (£,x(y (O )
(PO - o e entete)

0

D%%(t) = ey Pt x(r(D) 1
f(t.x(alt)) - T

f’—‘g (t,x(p(t)),]px('c(t))) .

0 (t —s)1¢

ds

n 1 rtg (tx(u(e).1Px(z(t)
B Dax(t) g Zlﬁkhk(t!x(y(t)) = f(t’x(a(t))l"(q) jﬁ ( (t 1 S) 1-¢ )

k=1
Since #(0) = 0 ,h(00) = 0,£(00) #0

It follows that

i g (ex(u(®).1Px(x(2))) 2
B
r'(J) fo LG ds + Z 1Pehy (8, x(y (1)),

k=1

Dox(t) = f(t,x(alt))

teR,
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REICIOLCIN

Ié'D(Sx(t) = ]af(t,X(a(t)) l—,(z) 2 (t 2 5)1—5

L

+ Iaz 1Peh,(t, x(y(t))

k=1

t,x(u(e)), 1Px(z(¢))
(t—s)1¢

1 (%9 g
#(6) = PPf(tx(a(0) 5 fo ( )ds+ Zfﬁk”hk(t.x(y(t))
k=1

Applying the semi group Property for 1°1Pkh, = 1F*0h k= 123,..n

Conversely differentiate (4.1) of order &and then { with respectto t , we get,

S (Dox(t) — B, IPehy e x(y(D))  d 1 jtg(t,x(u(t)),lpx(r(t)))d
;l?{ f(t,x(a(t)) }= dt$T({) Jg (t—s)1¢ >

af (D%x(t) - ‘£=11f3khk(t,x(y(t))} _&

et /4
@t F (6, (a(D) 2709 (61 12(x(0))

d% (D%x(t) — X7 1Peh, (£, x(¥(1))

We consider the fractional order nonlinear quadratic functional integro-

differentialequation (2.1) assuming that the following hypothesis is satisfied.

(H,) The function f(t,x) : Ry x R = R\{0} is continuous and bounded with bound

F = sup|f(t,x) |there exists a bounded function! : R, — R, with bound L Satisfying
\-sz) EfR.‘_ xR

If(t,x) —ft, ] <UD x—yl,t€R, forall x,y € R

(H,) The functionsg: R, x R x R — R satisfy caratheodory condition (i.e.measrable in !
for all x € R and continuous in x for allt € R, ) and there exist function m; €

LY(R,,R) suchthatg(t,x,y) Sm,(t) V(t,x,y) ER, x Rx R
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Additionally we will assume following conditions are satisfied.

( H3) The uniform continuous function v: R, — R defined by the formulas

v(t) = |, t M8 G bounded on R, and vanishat infinity, that isJim,_,,v(t) = 0

0 (t—s)1-¢
( H,) The function hyiR, xR >R k=123 ... n , with hi(00,)=0k=
5o T n are continuous and there exist positive functions Ak = 123 ........ n with

bound [|A || such that

| h (£ 2(r(9)) = hie (£ (r(D))] < Al 1x() = YDV LER, 2y €R
| hy (t,x(y(t)))l < H,(t) and iEank(t) =0
(Hs) The functions «,y,T: R, — R are continuous.

Remark 4.1: Note that if the hypothesis( H,)hold, then there exist constants K; > 0 and
such that:

1 5 my(s)
i g f::.._?[‘(() .[0 (£ =5)*"

Theorem 4.1: Suppose that the hypotheses [ (H;) - (Hs)] are hold. Furthermore
if(llall Ky + IBI) < 1 where K, are defined remark (4.1), Then the equation (2.1) has a
solution in the space BC(R., ,R) Moreover, solutions of the equation(2.1)are locally

attractive onR .

Proof: By a solution of the (2.1) we mean a continuous functionx: R, — Rthat satisfies

2.1)onR,.
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Let X= BC(R,,R) be Banach Algebras of all continuous and bound

valuedfunction on R, with thenormllxll = sup [x(t)|(4.1)
tER,

We show that existence the solution for (2.1) under some suitable conditions on the

functions involved in (2.1).

Consider the closed ball B,[0] in X centered at origin O and of radius r, where
78 T¢ Thits
r= |IFl mllml!lm+ || Hy HW >0

Let us define theoperators, C: X — Xand B:B,[0] — X by

Ax(t) = 1°f(t,x(alt) )4.2)

tx(u(0)),1Px(z(1)))
(t—s)t¢

t
and Bx(t) = I‘(1€)J g( dsVtR, (4.3)
0

Cx(t) = ) 1P¥hy (&, x(y (1) )(4.4)
k=1

In the view of hypotheses (H,), the mapping A is well defined and the function «Ax is
continuous and bounded onR . The function Bx is also continuous and bounded in view

of hypotheses( H;).

We shall show that operators «A,Band C satisfy all the conditions of theorem (3.3).This

will be achieved in the following series of steps.

Step I Firstly, we show that A is Lipschitz on . Letx,y € X be arbitrary, and then by
hypothesis (H,), we get

| Ax(t) — Ay(t)] = |I°f(t, x(a(t)) = I°F(t,y(alt))]

trs _ 01 tp— )01 ‘
iy fo %—f(s,x(a(s))ds —fo (—r(:—g‘s))—f(s,y(a(s))ds
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t 5-1
(t—s)
< [ Lo floal9) - flsyelo)as
t(t_ 8)6—1
< L —F(Tl(t)! x—vylds
t 5-1
(t —5) )
< J;) —T(B:)—LI x—y|ds
+8
< F(6)5LI x—y| forallte R,

Taking supremum over t

8
AT i g
<Ts 1)Lllx vl
[ltAx — Ayl < Lyllx —yllfor all xy € X (45)
Where
TS
< T{8x'7) -

This shows that «4 is Lipchitzianon X with theLipschitz constant L.

Step IL Now,we show that C is Lipschitz onX. Letx,y € X be arbitrary, and then by
hypothesis (H;) , we get

|ex(t) — Cy(t)] =

Z 1848 (£, x(y (1) —Z 1Piré hk(f=y(y(t))l
k=1 hEs

2 t(t o) S) Br+d-1
< —_—A — y(s)id
;L T3+ 0 k() x(s) — y(s)ids

Page |308 Copyright © 2019Authors



Our Heritagewac carsLisied)
1 S9N : 0 474-90 30 Vol-68, Special | ssue-12

National Conference on Recent Trends in Physics Chemistry and
Mathematics( RTPCM 2020}
Heldon 4th February 20 20 Organisedby: Department of Physics,
Chemistry and Mathematics, Sunderrac SolankeMahavidyalays,
Majalgaon, MS

ﬂk +&

<l - y!lZlIlk bt o

n

Pr+6
lex(t) — Cy(t)] < 1Ay IIT P
I

ey T

This shows that € is Lipchitzianon X with the Lipschitz constant

A NITBret @
T(B+ 6+ 1)

Step HI: Secondly, To Prove the operator B is completely continuous operator onB,[ 0].
Firstly we show that B is continuous on B,[0].

Casel:Suppose that t = T there exist T > 0 andlet us fix arbitrary £ > 0 and take x,y €
B,[0] such that. |lx — yl|l < & Then

[(Bx)t— (By)tl <

tg (£x{(0).1Px(x(1)) J’fg(tY(u(t))I"y(r ))
|r(c)J (t—s)™* I (t= )2
ol J’lg(t x(u(e)), IPx('r t)) f lg ty(” );py(f(t)m
) t—S) t——S)l ¢
1 [[*_ma(s) f_my(s) ]
ST@l, Tt ) T

2 mq (S)
=T f(t—slf ]
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Hence we see that there exists T > 0 such that

v(t) < )

fort>T

Since &is an arbitrary, from (4.6) we derive that |(Bx) t — (By)tl <« (47)

Casell: Further, let us assume that,t € [0,T] then evaluating similarly as above we obtain

the following estimate

[(Bx) t — (By)tl <

0 (t—s)*¢ (t—s)*¢

1 tg(t,x(u(t)),l"’x(r(t))) 1 tg(t,y(u(t)),l"y(r(t)))
= ir(() J Bl fo e

<

1 T‘g (t,x(,u(t)), Ipx(r(t))) -g (t,y(,u(t)), Ipy(t(t)))l
r(Q) fo (t—s)* 5

jTWrT(g, €) ds]

1
Sr({)[ Sl

W (9.€) ¢
e

E

A

-W: (g.€) F 4
_F({'i' 1) ¥ dS- . (48}

IA

‘Where
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w(g,€) = sup {Ig(t,x(u(t)),lpx(r(t))) - g(t,y(ﬂ(t)),f"’y(‘c(t)))i :s €10,

el-rrl|lx—y| <€}

Therefore, from the uniform continuity of the function g(t,x,y) on the set[0,T] x [—7,7]
.we derive that w, (g,€) >0 ase— 0

Now combining the case I and II, we conclude that the operator B is continuous operator
on closed ball B,{0] in to itself.

Step IV: Next we show that Bis compact on B,{0].

(A) First prove tha every sequence {Bx,} in B(B,{0]) has a uniformly bounded sequence
in B(B,[01). Now by (H,) - (Hs)

tg (t x(u(t)), Ipx(r(t)))
[CNE Tl R et

|g (t x(u(t), Ipx(r(t)))‘
[(Bx,)tl SF(Z)[ TESEE

£ my(s)
(Br)l < s [ TS ds
v(0)
|(Bx,)tl < 0
|(Bx,)tl < KVt € R, (49)

Taking supremum over t, we obtain [|Bx, || < K;yn €N
This shows that {Bx,,} is a uniformly bounded sequence inB(B,{0]) .

(B) Now we proceed to show thatsequence{ Bx,,}is also equicontinuous.
Lete > 0 b be given. Since there is constant T > 0

Case I. Ift, , t, € [0,T]then we have
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|(Bx,)t;— (Bxy) tql

<

’ Itz g (t,xn(u(t)),IPxn(r(t))) o 1 ftlg (t,xn u(t)), 1P, (x(t)

r(9) Jo (t2 = )¢ ) (T =9

(t xn(pt(t)) I xn('f(t)))‘

“F(Z) jtz — )¢

1 lg (t xn (il t)).1 Paxn(x(2) ))l g

LR (t, — )7
0
<‘1 jtz i) s —— i d\
S, G- TP Jo b9 i

my(s) 5 s ma(s)
sr(f) 0 (tz—s)l_qu Jo (t1—8)1—€dsl

from the uniform continuity of the function wv(t) on [0,T] , we get

|(Bx,)t,— (Bxp)tyd =0 asty > L
Case II: Ift,, t;= T thenwehave

[(Bx,)t,— (Bx,) t4l

[' O (ty —s)'~ ¢ r(¢) Jo (t1 gy

ta g (t X (1(2)), 1P (2 (2) )) o 1 J'f1 g (t,xn(;z(t)),lpxn(‘r(t))) ds\
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s |9 (£, (WD), 1P (a(0))]
s r(¢) f 7

tz . S)l-

ty

1| lo(emue).PraG@)|

SN (t1 —s)*7¢
0
l1 Lz (txn(u(t)) Ipxn(r(t)))|
SFMLL LS SR

| 1 ffi | (t,xn(u(t))J”xn(f(t)))lds

3 |r(a) (f, —a)s

<V(t2) v(t,) NS
N LT 22
<east; >ty (411)

Case NE:Ift,, t, € R, Witht, <T <t,then we have

[(Bx,)t; — (Bxp)t1] < |Bxy(t) = Bxn(T)| + By (T) —Bxp(ty)] (4.12)
Now if t; = tythent; »T and T= ¢,

Therefore,| Bx,(t;) — Bxn(T)| = 0,|Bx,(T) — Bxp(ty)l =0

and so | (Bx,)t, — (Bx,)t,| — 0 ast; —»tyforall ty, t; € Ry (4.13)
Hence {Bx,} is an equicontinuous sequence of functions inB(B,[0]).

Therefore, it follows from Arzela-Ascoli theorem B is completely continuous on B [0].
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Step V: Next we show that Ax.Bx + Cx € B,[0] forall x € B,[0] is arbitrary, th

t,x(u(t)),1Px(z(t) -
0 = Pitx(ald) g f A x(Tt))ds“zfﬁ"”"k(t'x“’(”)

Y i
kit k=1

lAx(t). Bx(t) + Cxl <|Ax(t)|.|Bx(t)|+ [Cx(t)

tg(t x(u t)), Ipx('r(t)) s -
ek )l|r(of — )¢ ; ,Zlmk ®hi(t. (v (D)
&L g tx(y ), IPx(z(t))
f o f(tx(a(t)|l j‘ = I

(t — Bitd
ZJ F(p;’i) (Ihk(s’x(]’(s))l)ds

t 5-1
(t T5)
=T

| F(t) lds 1 j L Imy(t)| ds
I J (t~s)t% -t

t(t—s)Bk+51
Z] Tt 6 kiifglulas

il T¢ TBitS
Hy lgr—gea
(6 +1) "’"1”1"({+ + I " T(B, + 6+ 1)
Taking the supremum over t, we obtain || AxBx + Cx [[< 7 forall x € B,[0]

<
<|IFll 5

Hence hypothesis (c) of Theorem (2.3) holds.

Also we have M = || B(B,{0]) ll= sup { I Bx Ii: x € B,[0]

ds x € B,[0]

” tg(t x(u(6)), IPx(c(t ))
= sup{ i‘;tf F(C)j T
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= sup{sup { 0 ), g (e) ds X € BT[O]}

—g)1-¢
tZO t S)

B v(t)
< SUp \SUPT 7 ) <K

ts0 \t20
and therefore&M + 71, we have (llallKy + [IBIl) < 1, Where § = [l«ll and 7 = 1Bl
Now Appling Dhage’sTheorem [2.3] gives that FQFIDE (2.1) has a solution on R ..

Step VI: Now for the local attractivity of the solutions for (2.1), let’s assume that x and

ybe any two solutions of the (2.1) in B,[ 0] defined on R, . Then we have,

t x(u{t ) Ipx(r t)))
lx(t) = y(t)] = |I°F (e, x(alt) I‘(()f i ds

+ Z 186+, (t, x(y (1)
k=1

tg (e.y(u(®).[Py(x()
— 1%f(t, y(al t))I‘(( f ( G )ds
i3 Z 1Pt (£, y(A(D)
k=1
lx(t) — y(t)| < Ziﬁ“+5hk(t,x(y(t)) + Zlﬁk+5hk(t,y(y(t))
k=1
tg(t x(,u(t)) 1°x(z(t))
+ |%f(tx(al t))rmf ( =1 )ds

5t y(a(t)) Jfg (t y(u(t)), fpy(r(t)))dsl

(t—s)1¢
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B +6

lx(t) — y(t)| < 21Hy HW

(4.14)

For allt € R, .Since and lim, . Hy(t) = O this gives that lim,_,esuplx(t) —y(t)| =

0.Thus the (2 .1) has a solution and all the solutions are locally attractive on R,

5. Existence of ExtremalSolution:

In this section we consider the following Definitions and show that given equation (2.1)
has M aximal and M inimal solution:

Definition 5.1 : (Chandrabhan) A function f:R, x R — R is called chandrabhan if

i) The function (x,y) = f(x,5,2) is measurable foreachz € R

ii) The function z = f(x,y,z) is non-decreasing for almost each (x,y) € R4

Definition 5.2: A function p; € BC(R,,R) is called a lower solution of the FQFIDE
(2.1) on R, if the function

{D5p1(t) —yn_ 1Pkt (Y1),

Fltpaald) s continuous absolutely and

1 ftg(t’x(ﬂ(t))-’px(ﬂt)))ds

pa(t) < 1°£(6.x(a() 5y | (t—s5)'¢

+ Zlﬁk”hk(t,x(}’(t)) (5.1)
k=1

Again a function p, € BC( R.,R) is called an upper solution of the FQFIDE (2.1) on R,
if the function

r {D‘szm - zxﬂrﬁkhk(t,pz(y(t))}
f{t!pZ(a(t))

is continuous absolutely and
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ftg (t,x(p(t)),[px(r(t))) .

.
pa(t) 2 I°F (&, x(a(0) 5y | (b= g)7=

+Zrﬁk+5hk(t,x(y(t)) (52)
k=1

Definition 5.3[10,35]:A closed and non-empty set ¥ in a Banach Algebra X is called 2

cone if

i K+XckK
i AXSK for A€EXK,A20
i, {=%) nXK = 0 where 0 is the zero element of X.
and is called positive cone if
iv. HKoKCEK
And the notation o is a multiplication composition in X

We introduce an order relation < in X as follows.

Let x,y € X thenx <y if and only if y—x € K. A cone K is called normal if the
norm |I-|l is monotone increasingon XK. It is known that if the cone K isnormalin X

then every order-bounded set in X is norm-bounded set in X.

Definition 5.4 : A solution x,, of the Integral equation is said to be maximal if for any

other solution x to the problem x(t) < xy(t)Vt € R

Again a solution x,, of the Integral equ ation is said to be Integral equation if for any other

solution x to the problem x,,(t) < x(t)Vt €R

Lemma 5.1[13]: Let p;,P2.q,,92 €K be such that p; < g,and py < qthen pip; =
4192-

For any py,p; € X = C(R,,R) ,p; Sp, the order interval [p,,p,lis a set inXgiven by,
[m,pz] ={xeXip;Sx<=< Pz}
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Definition 5.5[6]: A mapping R:[p;,p,] — X is said to be nondecreasing or mgr
increasing if x < y implies Rx < Ry forall x,y € 2402
Theorem 5.1[14]: Let K be a cone in Banach Algebra X and let[p,,p,] € X. Suj
that A, B:[py,pal = K and C: [p1,p2] = X be three nondecreasing operators such that

a. Aand C are a Lipschitz with Lipschitz constant &, B

b. B is completely continuous,

c. The elements p;,p, € X satisfy py < Ap Bp;+ Cpyand Ap,Bp, + Cpy = p‘g
Further if the coneX is normal and positive then the operator equation x = AXBY + Cx
has the least and greatest positive solution in [py,p,] whenever aM + B < 1 ,where

M = 1BUpy,p Dl = sup{lIBxll: x € [p1.pal}-

we consider another hypothesis

DOx{t) -XP_ 1 Bkh (tx(r(D)).
fltx(at))

(Hg) The functionx — { s increasing in the interval

(H) The FQFIDE (2.1) has a lower solution p, and upper solutionp, on R with p; < p,.
(Hg) The function g is caratheodory .

(Hg) The functions f:R,x R >R — {0},g:R,x Rx R—> Rand hjiR,x R > R are

nondecreasing in x almost every where for t € R..

(Hyo ) The function my: R, = R defined by

ma(®) = |g (60200 oo (e0)| + o (£:p2(0().12pa(x(0)))

isLebes gue measurable.

Remark 5.1:Assume that the hypotheses ((Hg)- (Hp) ) holds, then the function t —

g (t,x(,u(t) ), IPx(z(t) )) is lebes gue integrable on R, say
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\9 (t,x(u(t)), I”x(r(t)))‘ <m,(t),ae.t €ER,

For all x € [p;,p,] and some Lebes gue integrable function m;.

Theo 5.2 : Suppose that the Hypothesis((He) - (Hyo)) are holds and

Hall {r((l+1) TS|lm, llﬂ} + ||Bll<1.Thenproblem (2.1) hasa minimal and maximal positive

solutions on R.

Proof :LetX = C(R,,R) and we define an order relation “<” by the cone X given by
(5.3). Clearly ¥ is a normal cone inX. Define three operators A, B and Con X by
(4.2), (4.3) and (4.4) respectively. Then FQFIDE (2.1) is transformed into an operator
equation AxBx + Cx = xin Banach algebra X. Notice that (Hg) implies A, B:[p1,pal =
% also note that (H;) ensures that p; = Ap,Bp,+ Cpq and  ApBpa+ Cp, < P2
Since the cone XK in X is normal, [p,.p,lis a norm bounded set in X. Now it is shown, as
in the proof of Theorem (2.1), that A and C are Lipschitz with a Lipschitz constant el
and ||l respectively. Similarly B is completely continuous operator on [p1.0,]. Again
the hypothesis (Hg) implies that A ,Band C are non-decreasing on [py.p,l. To see this,
let x;,X; € [py,p2] besuch thatx; < X;. Then by (Hg).

J’fg(t,x(y(t)),lpx(r(t)

:
#(t) = Pfex(@0)igy ) = a7

)) ds + z 1Be*0p, (¢, x(y (1))
k=1

Axy ) =1 f (8, x,(a()) < I°f(L, x,(a(t)) = Axy(t) forallt € Ry

and

ds

th(t: xl(#(t))ﬂ'pxl(f(t)))

1
Bl = TRy ), (t—9)°
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ds| = Bx, (1)

1 thf ("Xz(u(t)),f"xz(f(”))

S0 ), E—5)17

ex,(t) = ZI‘S"*Shk(t,xl(y(t)) < z 1BeBh, (8, 1, (v(8)) < CxylE),  LERy
k=1 k=1

So,B and C are non decreasing operatorson{x,,%z |

Again by Hypothesis (Hz)

1 ftg (t,pl(}u(t)),lppl(r(t) )) "

py(t) < I°f(t.p4((0) 577 | e o

+ Zlﬁﬁshk(ﬁh()’(f))
k=1

y th (t,x(ﬂ(t)),!px('f(t))

Sfaf(t,x(a(t))r((.) : (t__s)l—{ )dS+ Zlﬁk+6hk(t!x(}’(t))
k=1

t g (t,p,(u()), IPp,(z(1) n
jo ( (t-s)t°¢ )ds‘“ Ziﬁk+6hk(t!p2()’(t))

1
5 Iaf(t,pz(a(t)) r(c)
k=1
< p,(t),Vt € R, and x € [py,pal
As aresult p,(t) < Ax(t)Bx(t) + Cx(t) < py(t) Vi€ R, and X € [p1.p2l

Hence AxBx+ Cx € [p,palVx E [py,p2]

Again M = [[B([p1.p D)l = sup{lBxll:x € [p1,pal}

£x(u(0)1Px(x(8))|

1 (tlsl
< sup \SuPrer, \ (7 J’o e Y x € [py,pol
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1 (=97 1 ¢
Ssup!m 7 L”mlnplsl—;mT l|m1”L1

Since aM + B < |lal {-r(;—ﬂ)Tfnmlu,;l}4~ 1Bl < 1

Thus by theorem (5.2) given fractional order nonlinrar functional integro-differential

equation (2.1) has a minimal and maximal positive solutions on R.

6 Example: Consider the following fractional order quadratic functional ID equation of
type (2.1)

o Dz/3x(t) -~ Lllﬁ"hk(t,x(y(t)))

f (t,x(a(t)))

=g (t,x(y( t)), IPx(z(t) )) vt

eER, (61)

x{0)=0and D2/3x(0)=0
, |x(t)] —2 t—8
f(t,x(a(t))) = (sin (mt + 2t)) {lx(t)l SR }
t

P .

g (t,X(l‘(t))sI X(‘E(t))) = letsin{ﬂ cosﬂ} _let gin[“lmlxl COSE}
4 2+| x| 8 4 241 3|2 8

3
Z 1Pxhy (8,x(¥(t)))

k=1
t._- P t
1, e‘sindt Y sinx(t)cost 1 7 |x(t)|te
e B Sl i e T ey e Y B el ey
¢ (2+1+|x(t)| (4 tx 2 Tt} B
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obiviously a= mt + 2t, p= t, T = mt are continuous.

(@) First to show hypothesis (H,) satisfied.
|f (t,x(a(t))) ~f (t, y(a:(t)))l

: 2 t=8 . ly()|-2 t-8
= |4sin {mT+ z)t{lx(t)l+5+ 15 }—ism(n+ z)t{ly(t)|+5+ 15 }}

= lsin (m+ 2)::{”(”'_2 Iy(t“—z}l

lx(t)l+ 5 ly(t)[+5
< (sinmt + t)|x(t) — y()|

I(t) = sin (m+ 2)t

(b) To show that hypothesis ( H;) is satisfied:

3
Here we taking m, (t) = ¢ /et14 and

t
t,x(ul(t)), IPx(z(t))) =
g( (” ) ( )) letsin{ 4| Cosn’_t}_lets. {4111/3ix| Tt_t}
4 2+|d . 8 4 i 241 /3 x| 6053
Implies that g (t,x(u(t)),1Px(z(t))) < m, ()
1
t 3
e < 5
letsin{ 4| x| Cosﬂ_t}_letsin{4111/31x| TI_I} /et14
4 2+| x| 8 4 241 /3% CoR S

Hence hypothesis ( H,) satisfied

(¢)To show that hypothesis ( H,) is satisfied:
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3
Zlﬁkhk(t,x(y(t)))
k=1 it
— i § t
ik e sindt 1, sint .x(t)cost 1 7y |x(t)|te
< (2+1+|x(t)l+l t+ 2 +t+I A g

, ~tsindt “tsin4t
Iy (£ (r(0))) = ha (8.5 ((0) )| = ‘11/4 (2 o ?;T(lt)l) <1 (2 e T;?t)l)‘

1+ |y =1 —lx(8)] ‘
1+ 1x(Oly(0)]+ )]+ 1y(0)]

< e tsinat|x(t) — y(t)]

< e tsindt

It follows that
A (t) = e Fsindt

|12 (620 (0)) = B (230 (0))

s smt.x(t)cost+ i St smt.y(t)cost+ 1
t+ 2 t t+ 2 t

sintcos

s(—;—z— {x() = y(£)1}

sintcos
< (—t—;—i— |2(t) —y(B)]

It follows that

A (8) (sintcos
2 g i

7/ Ix(t)te®\] 7 ly(t)|te*
7h| (5w )| - e
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te'
= (w){flx(t)l —ly(01]}

It follows that

(d)To show that hypothesis( Hy) is satisfied:
¢3
/ et14

t t 3 [t
m, (t) s e v
v(t) = fomds— L(t—s)l“cds_ etmfo(t s)*7ds

t3 ([(t=t) (£-0)¢
e

tf+3
~ ef14(9)

t3
" el14

I
ey
—
Ll
—t
i b

¢
Implies that v(t) is bounded for ¢t € R,

Hence the entire hy potheses are satisfied. Consequently all the conditions of theorem (2.3)
are satisfied.

Thus problem (6.1) has at least one solution on t € R +
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