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I. INTRODUCTION

Differential and integral equations are one of the most useful Mathematical tools in both applied and
pure Mathematics. Moreover the theory of Differential and Integral equations is rapidly developing using the
tools of Topology, Functional Analysis and Fixed point theory. This is particularly true for problems in the
related fields of Engineering, Mechanical Vibrations and Mathematical Physics. There are numerous
applications of differential and integral equations of integer and fractional orders in Electrochemistry,
Viscoelasticity, Control theory, Electromagnetism and Porous media etc. [5-16, 20-24,32]
To study the existence the solution of second order nonlinear functional differential equation,we obtain the
result by using fixed point theorem for two operators in Banach space .
We consider the following second order nonlinear functional differential equations:

D? [x(t) i (t,x(e1 (t)))] =gt z(6,(t))], te R+]
x(0)=0
Where, f(£,x): R, XR > R —{0}, g(t,x): R, XR >R and6,,6,: R, —» R
Here the solution of nonlinear differential equations (2.1.1) we mean a function x € BC(R,,R) such that:
(1) The function t - |——2 is bounded and continuous for each x € R.
1(ex(61(1)))
(ii) x satisfies (2.1.1)

(2.1.1)

II.  PRELIMINARIES
In this section we collectthe definitions, notation, hypothesis and preliminary tools

Let X = BC(R,,R) be the space of bounded real valued continuous function on R, and S be a subset of X.

Let a mapping A: X — X be an operator and consider the following operator equation in X, namely,
z(t) = (Ax)(t), forall t € R.(2.2.1)

Definition 2.2.1[31]: Let (X, d) be the metric space and a € X and for some real number r > 0 the set B.[a] =
{x € X:d(x,a) < r}is called closed ball centered at a with radius -

Dcﬁni}ion 2.2.2[22]: We say that solution of the equation (2.2. 1) is locally attractive if there exists a closed ball
B,[0] in the space BC(R.,, R)for some Xo € BC(R,,R)and for some real number r > 0 such that for arbitrary

solution x = x(t) and y = y(t) of equation (2.2.1) belonging to B.[0] n S we have that, limt.,m(x(t) -
t=02.22)

Definition 2.2.3[22]: Let X be a Banach spi

ace. A mapping A: X — X is called Lipschitz if there is a constant
a > 0 such that,||Ax — AY|| < al|x - ylifo l

' rallx,y € X. If a < 1, then A is called a contraction on X with the
contraction constant a.
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21 2.2.4[18]:.An operator U on a Banach sp
Sof X, U(S) is relatively compact subsc

continuous on X.
Definition 2.2.5[18

Definition 2.2.6[21]: Let f € £1[0,7]and a > 0. The Riemann — Liouville fractiona

onal Differential Equation

Second Order NonhW

i bsct
apact if for any bounded su
s hen it is called completely

ocally Antractivity Result for

ace X into itself is ca
tofX. IfFU is continuous and compact, t

r (in general
J: Let X be a Banach space with the norm [I-ll and let U: X — X be an operator (in g

r). ThenU is called b oy
Compact if U(X) is relatively compact su set of X.
TotalI;y bounded if U(S) is totally bounded subset of X for any bounded subset S of X.

i ifiti i and totally bounded operator on X _
Completely continuous if it is continuous an y p (e b ¢ of

real function f is defined as

Such thal

Definition 2.2.6.1 [21]: The Riemann-Liouville fractional integral o

£1[0,7]

t
d [ [
D(f(”=r<1—<)22f(c—s)<ds . 0<g<?

0

t DEFE) =15f(t) = r—:{—)fgzrfs(;-szds respectively. .
f order ¢ € (0,1) of the function f '€

is defined by the formula: i
1 f(s)
¢ =
1) r(Oof(c —oreds teloTl

Where ['(¢) denote the Euler gamma function. The Riemann-Liouville fractional derivative operator of order {
defined by

'Y
( =£—=-—° 1—(
dté dt

Theorem 2.2.1 [6) :(Arzela-Ascoli Theorem) If every uniformly bounded and equicontinuous sequence {f.} of

functions in C(R,,R), then it has a convergent subsequence.
Theorem 2.2.2[6]: A metric space X is compact iff every sequence in X has a convergent subsequence.

Theoren
LetA, B

12.2.3[26,27]: Let X be a Banach Space and D be a non-empty bounded closed convex subset of X.
maps D into X s.t. Au + BveD,for every (u, vJE D.If A is a contraction and B is completely

continuous then the equation Aw + Bw = w has a solution won D. i.e.

a)Aisa

contraction

b) B is completely continuous
c) Au+Bve D for (u,v) € D

III. EXISTENCE THEORY

For the solution of (2.2.1) in the space BC(R,, R)of bounded and continuous realvalued functions defined on
R, , Define a standard norm ||l and a multiplication “:” in BC(R,, R)by,lIxll = sup{lx(t)l:t €
R+, xyt=xtyl, teER+(2.3.1)

Clearly, BC(R,,R) becomes a Banach space with respect to the above norm and the multiplication in it. By
L;(R+,R) we denote the space of Lebesgue-integrable function inR, with the norm ||-||;: defined by ||xli =
I Ix(®)]de(2.3.2) ¢
Definition 2.3.1[6]: A mapping g: R, X R = R is Caratheodory if:

i)

t — g(t, x) is measurable for each x € R and

ii) x = g(t, x)is continuous almost everywhere for t € R,.
Furthermore a Caratheodory function g is £L! —Caratheodory if:

iii)

For each real number r > 0 there exists a function h, € L'(R,,R) such thatlg(t,x)| < h,(t)a.e. t €

R, forallx € R with|x] < r

Finally a

caratheodory function g is £} —caratheodory if:

iv) There exists a function h € VLY(R,, R) such that |g(t,x)| < h(t), a.e. t€ R, forallxeR

For conv

We need following h

equation

(Hy) The functions 0,,0,

(H3)The

F= sup(

enience, the function h is referred to as a bound function for g.

firost IV. MAIN RESULT
@1 ypothesis for existence of solution of second order nonlinear functional differential

- :R, = R are continuous.
ction : ; :
iR\ XR - Ris continuous and bounded with bound

tx(8,(0)))emyx | f (t.x(el(t)))lthcrc exist a bounded function I: R, — R with bound L satisfying
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Q

|f (c.x(e,(t))) -f (t.}'(f’x(t)))|

-—I(—EM teR,,forallx,y€Rand0 <L <N
2(N +|x - yli)
and vanishes as lim.e

ST : i R, 2R
(H3) The function g: Ry X R = R is satisfying carathcodory condition with continuous function h(t): R,
such that 2
gt,x) <h(t)Vte R andx,y ER. : i<h at
(H,) The function v: R, = R defined by the formulas v(t) = fot(t — 5)h(s) ds is bounded on R, and van

infinity, that is lim,_, v(t) = 0. . _
Remark 2.4.1: Ntote that the (Hy)and (H,) hold, then there exists a constant K; >0 such that K;
sup {v(t): teR,} ' 1 :
Lemma 2.4.1:"l+‘he function f, g satisfying SNFDE (2.1.1) then x is the solution of the SNFDE (2.1.1) if and
only if it is the solution of integral equation

x(@) = £ (6.x(6,())] + [ fo oy (5.%(6,(2)) ds] JLER,  (241)
Proof: Integrating equation (2.1.1) of second order, we get,
1D2[x(0) = £ (£:x(0, ()], = 1[g (5. 2(8:2))]
D[x(t) - £ (t.x(6; (t)))]: = 1[g (s, x(0,())]
D [x(t) -f (L‘,x(()1 (t)))] = I[g (S,x(ez(s)))]

Again integrating, we get
. [x(t) -f (t, x(6, (t)))] =rje [g (s,x(ez(s)))] ‘

x(t) = [f (t,x(el(t)))] + [12 [g (s,x(ez(s)))]
x@ = [f (tx(0:0)] + . o fo (t = 5)g (5.2(6,(s))) ds

x(@) = [f (tx(6: ()] + [ fo - 59 (s.x(6,())) ds:

t (t-s)""1

Sincefotf(t)dt" = Jo “m-mn f(s)ds, Where n = 0,1,2,3, ... ... ...
Conversely differentiate (2.4.1) of order 2 w.r.to t, we get,

D2 [x(6) - £ (t.x(6,(1)))] = D* [ fo -9 (s.2(6:())) dS]

D2 [x(t) - £ (. x(6, ®))] =2 %2) J; t(t —s)*lg (s.x(GZ(S))) ds]

D? [x(t) —-f (t,x(al(t)))] =g (s, x(Oz(t)))
Theorem 2.4.2: Assume that condition (H,)-(H,) hold. Then (2.1.1) has a solution in the space BC(R,,R),
moreover solution of (2.1.1) are locally attractive onR,.
Proof: By a solution of SNFDE (2.1.1) we mean a continuous function x: R,
onR,. LeX = BC(R,,R) and define a subset B,[0] of X as B.[0]
inequality, F+K, <,
Let X = BC(R,,R) be Banach algebra of all bounded continuous real-valued function on R
lixll = suplx(e)l,t € R,(2.4.2)
Under some suitable conditions involved in (2.1.1) we obt
(2.1.1) is equivalent to the SNFIE

x(©) =[f (e.x(0,0))] + [ fo =529 (5.x(0, s))) ds]

Let us define the two mappings A: X — X
and B: B,.[0] — X by

Ax(t) = £ (t,x(0, (®).t € R,(2.4.3)

J

teR,

= R that satisfies SNFDE (2.1.1)
={xeX:|x|] < r}.where r satisfies the

+ with the norm

ain the solution of SNFDE (2.1.1) Now the SNFDE
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—

Bx(t) = [{(t - 5)g (s,x(@z(s))) ds, t € R,(2.4.4)

Thus from the SNDE (2.1.1), we obtain the operator equation as follows:

x(t) = Ax(t) + Bx(t), t € R, (2.4.5) ‘

If(tlzc operator A and B satisfy all the hypothesis of theorem (2.2.3), then the operator cquation (2.4.5) has a
solution on B,.[0]. .

Step I: Firstly we show that A is contraction mapping X Let x,y € X; then

lAx(e) = Ay ()] = £ (£.x(6:(0))) - £ (£.3(6,0))))|
LOlx(6:0) = y(6.)]

- 2(N +x—yD
Llx(6,(1)) — y(8,(®)]
< ] €
< 2N+ Tx =D forall teRr,
Taking supremum over ¢
Llix = yll
lleAx = AYll £ —————— forallx,y € X
Y= AW Ik =y Y
This shows that 4 is contraction mappingwith
L
Ly =
PT2N +lx -yl

Step II: Secondly we show that B is completely continuous operator on B,.[0]Jusing Granas at [18], it can be
shown that B is continuous operator on B,[0].

Let us fix arbitrary € > 0 and take x, y € B,[0]such that||x — yll<e.

J’(t —-3s)g (s,x(ez (s))) ds —
1Bx(t) - By(®)l = |° ,

f(t - s)g (s,y(ez (s))) ds

-+

]
< IL (t—s)g (s,x(t92 (s))) ds fo (t-s)g (s,y(é"2 (s))) ds

t t
< f (t—s)h(s)ds + f (t —s)h(s)ds
0 0
<2[,(t-s)h(s)ds ,
< Zgrsl)rzlz(s)ds < 2v(t) (by Hypothesis Hg)

Asv(t) < _i;. IBx(t) —By(t)|l < e.

Thus B is continuous.

Step I1I: Now we will show that B is compact on B(B,[0])

a) First we prove that every sequence { Bx,} in B(B,[0])has uniformly bounded sequence and {Bx,} is
equicontinuous set in B,[0]. Since g (t, x(6, (t))) is Ly — caratheodary, we have

IBx, ()] = J:(t - s)g (s, Xy (92(5))) ds

< fo‘(t —13) Ig (s, xn (6, (s)))l ds
< ft(t = s)h(s)ds
0

t 1
S b g h()ds < w(e) (by Hypothesis Hy )
Taking supremum over 1, we obtain, |IBx, || < K, fo
" ; < rallx € B.[0
Where, K, = Supeg, {v(t)} " ! il

This shows that { Bx,,} is uniforml bounded se i
To show that {Bx,} y vounded sequence in B(B,[0])

(2.4.5) implies n} is an equicontinuous sequence, let ty.t; € [0,T] be arbitrary. Then for any x € B,[0]

* H .
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j’/ .

' i & |

-9 (5,20 (05()) ) ls = Eg
0 v ST
|Bx, (t;) =~ Bx, (tl)l = t ""jf':"_‘-’.
j(t, ~$)g (s, x,,(O,(s))) ds o

4]

ta ty
= U (t; = s)h(s)ds = f (ty = s)h(s)ds

0 0
< Ju(e,) - v(ty)l ) )
The right hand side of the above incquality docsn't depend on x and tends to zero
as t, - tz.ThcrchrC"an(tz) = 'Bx,,(l,)l = 0as ti - tz.
Ift,,t; 2 T then we have

[ (t, —s)g (s, Xp (92 (s))) ds —
IBx,(t;) = Bx, (t;)] = 0 1
J (t; = s)g (s, xn (0, (s))) ds

—

f‘z(tz — s)h(s)ds — J'“(t, —s)h(s)ds
0 0

< +

$)
(t, = s)h(s)ds
0

J“(t1 - s)h(s)ds
0

Su(t) +u(t) STHS S cas by 2t

Ift,,t, € R, then we have

lz}xn(t'l) e 'an(‘l)l = len(tZ) = Z;X"(T)I + len (T) == an(tl)l

If gy =ty,, then ty =»TandT =ty

Therefore |Bx,, (t;) = Bx, (T)| =0 |Bx, (T) = Bx,(t,)| = 0

So |Bx, (t;) = Bx, (t,)| =0 as t, = ¢,

Hence, { Bx,} is an equicontinuous sequence of functions in B(B,[0]) so B(B,[0]) is relatively compact by
Arzela-Ascoli theorem. By definition 2.2.4 B is compactwhich gives, B is compact and continuous operator on
B,[0].

Thus B is completely continuous on B,[0]

Step IV: Next we show that Ax + Bx € B,[0]

Letx,y € B, [0]such that x = Ax + Bx

[Ax(t) + Bx(t)] < |Ax(6)] + |Bx(0)]

< lf (r, x(a,(r)))l + lfor(t —-8)g (s, 1‘(82(3))) ds
< l/ (t,x(B,(t)))l + J:(r —s) Ig (s.x(ﬂz(s)))lds

I
<F+ f (t = s)h(s)ds < F + v(t)( by Hypothesis Hy)
0

Tuking supremum over ton R, we obtain ||Ax + Bx|l £ F + K, , ¥x € B.[0]

That 1s we have, [[xll = ||Ax + Bx|| < r, ¥x € B,[0).

which gives ¥ = Ax + By € 8,[0]

Hence assumption(c) of theorem (2.2.3) is proved.

Hence all the conditions of theorem (2.2.3) are sansfied and therefore the operator equation Ax + By = x hasa
solution in B, [0] . As a result, (2.1.1) has a solution defined on R, . ]

Step VI Finally we show the locally atractivity of the solutions for (2.1.1). Let x ¢ .
(2.1.1)m B, (0] )dcﬂncd onR, .'l‘hcu)\\c have ’ it L *huticng of

|7 (e.x(e,00))] + U(« ~ 5)g (5.%(6,())) ds| -

(by Hypothesis Hg )

x(t) = (1)l =

£ (1x(e,0))] + f(t ~5)g (5. ¥(6,())) dis

*Corresponding Author: S.N.Kondekar s T
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[f (t, x(6, (t)))] + [ (t-s)g (s,x(Bz (s))) ds|| +

(t,y(«?1 (t)))] + U (t—s)g (s,y(ez (s))) ds

< |f (e x(e:))|+ fo =) |g (5,x(6:(9))| s +
IF (e y(6:02))| + fo ‘-9 lg (s y(62())| s

4 t
<F+ f(t—s)h(s) ds¢+F+ f(t—s)h(s) ds
0 0

t
< 2F + Zf(t —$)h(s)ds < 2F +2[v()] . (by HypothesisH, ) » 4
. i t
For all t EOR+ aslim,_,, v(t) = 0 this gives that lim,_, sup|x(t) fy(t)l = 0. for all. t.Z T. This completes @

the proof.

V. CONCLUSION

In this paper we have studied the existence and locally attractivity of solutions to the second order noxﬂincar- ~
functional differential equation in Banach Space by fixed point theorem. y
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