IJARSCT

IJARSCT Impact Factor: 5.731

International Journal of Advanced Research in Science, Communication and Technology

Volume 12, Issue 4, December 2021

Antibacterial and Antifungal Activities of α-Aminophosphonate Derivatives

Rajkumar U. Pokalwar

Department of Chemistry

Degloor College, Degloor, S. R. T. M. University, Nanded, Maharashtra, India rajupokalwar@rediffmail.com

Abstract: Synthesized \alpha-aminophosphonate compounds were screened for antibacterial and antifungal activities. Antibacterial activities (Table I) were screened against Escherichia coli, Pseudomonas sps. While screening antibacterial activities, Streptomycin (Strep.) was used as a standard. Antifungal activities (Table II) were screened against Fusariumoxysporum, Macrophoniaphaseolina and Aspergillusflavus. While screening antibacterial activities, Carbendazim (carben.) was used as a standard. Almost all the tested compounds exhibited good to moderate activities against all species of bacteria used in this study.

Keywords: α-aminophosphonate, antibacterial, antifungal, Streptomycin and Carbendazim

I. INTRODUCTION

Quinoline ring system represents a very important and major class of heterocyclic compounds and is used as a key intermediate for many pharmacologically important compounds. ¹⁻² The derivatives of quinoline exhibits physiological and biological activities such as antimalarial, ³⁻⁵ anti-inflammatory, ⁶⁻⁷ antitumor, ⁸⁻⁹ DNA binding capacity, ¹⁰ antibacterial, ¹¹ antimicrobial, ¹²⁻¹⁴anticancer ¹⁵⁻¹⁶ anti-tuberculosis ¹⁷ antihistamine, ¹⁸ antifungal, ¹⁹ anti-HIV, ²⁰ antihypertensive ²¹ and antiparasitic properties. ²² Also quinoline is used in the study of bioorganic and bioorganometallic processes. ²³ Quinolines such as 2-chloroquinoline-3-carbaldehyde occupy a prominent position as they are key intermediates for further annelation and for various functional group interconversions. ²⁴⁻²⁵

Phosphonic acids and their phosphonate derivatives are of great interest in organic chemistry due to their biological activity. 26 Some vinyl phosphates have been reported aspotent inhibitors of phosphatase 27 and phosphodiesterase. 28 There are only a few reports on the synthesis and bioactivity of C-P bonds which have been found to have insecticidal 29 and antifungal 30 activities. Also α -hydroxyphosphonates 31 and α -aminophosphonates are important biologically active compounds. $^{32-33}\alpha$ -hydroxyphosphonates may serve as precursors for the synthesis of α -aminophosphonates which are analogs of amino acids. synthesis of α -halo substituted alkenes and alkynes, which are important intermediate in organic synthesis. $^{34-35}$

The literature survey of the antimicrobial activity of amides, sulfonamides, hydrazones, pyrazoles, pyrazoles, pyrazolins, oxadiazoles, coumarins and 2-hydroxy-3,5,6-trichloropyridine have shown that many of them are useful as the best bactericides and fungicides against the various gram positive and gram negative bacteria and fungi.

Some of the representative compounds synthesized in the present investigation were screened for their antifungal and antibacterial activities.

Escherichia coli are gram negative bacteria, it is used as index of water pollution and are important experimental material in biotechnology, since it requires only 20 minutes to complete its cycle and simple media for its growth. It is a normal intestinal flora of human body, but some times it acts as opportunistic when defense power of body gets impaired. E. coli can cause urinary tract infection. They contaminate herbs and spices products like chili, pepper black.³⁶

Staphylococci is a universal skin commensal, occasionally acts as an opportunistic pathogen in prosthetic devices, e.g. prosthetic heart valves, intrapertoneal catheters, orthopedic prostheses and vascular grafts. It may lead septicemia and subacute endocarditis. It may produce minor lesions like stich abscess. In immunosupressed individuals it may act Copyright to IJARSCT

DOI: 10.48175/IJARSCT-2351

58

www.ijarsct.co.in

IJARSCT

IJARSCT Impact Factor: 5.731 International Journal of Advanced Research in Science, Communication and Technology

Volume 12, Issue 4, December 2021

as opportunistic pathogen.³⁷The fungus Aspergillus, which is known as plant pathogen. It is soil born and also occurs on various substrates including plants and animals. It causes disease known as coller rot³⁸ in groundnut. This organism is also industrially important as it secrets various acids. It also helps in the soil formation and solvalisation of various elements,

We have studied combination of highly bioactive quinoline compounds with phosphonatefor antibacterial and antifungal activities so as to find new antibacterial bioactive and antifungal compounds and enrich thequinoline and phosphorus chemistry.

II. RESULT AND DISCUSSION

2.1 Antibacterial and Antifungal Activity

All the synthesized α-aminophosphonate compounds were screened for antibacterial and antifungal activities. Antibacterial activities of 3a-p (Table I) were screened against Gram positive Staphylococai, Bacillus megtesium-I and Gram negative Escherichia coli, Salmonella typhi, and Proteus vulgaris. While screening antibacterial activities, Streptomycin (Strep.) was used as a standard. Antifungal activities 3a-p (Table II) were screened against Fusariumoxysporum, MacrophoniaphaseolinaandAspergillusflavus. While screening antibacterial activities, Carbendazim (carben.) was used as a standard. Petri dishes and necessary glass wares were autoclaved (121°C, 15 Ib, 30 min). The nutrientagar plates were prepared by pour plate method. The sensitivity of the compounds was tested by disc diffusion method (paper disc method). All the bacterial cells were cultured in nutrient agar plates, antifungal cells were cultured in rose bengal agar plates. The compounds to be tested were dissolved in N,N-Dimethylformamide and were soaked on paper disc. The discs were placed into the plates and incubated at 37 °C for 24 hrs. The diameter (cm) of the zone of inhibition around each disc was measured and results were recorded.

Table I: Antibacterial activities of α-aminophosphonates

	т	A	ntibacterial	(zone of inh	ibition in cr	n)			
		Escher	ichia Coli	Pseudomonas sps					
Entry	25	50	75	100	25	50	75	100	
3a	1.4	1.5	1.6	2.0	1.2	1.4	1.6	1.8	
3b	0.9	1.0	1.0	1.1	0.8	1.0	1.0	1.2	
3c	1.0	1.0	1.1	1.1	0.8	1.0	1.2	1.2	
3d	1.5	1.5	1.8	2.0	1.4	1.4	1.5	1.7	
3e	1.2	1.4	1.6	1.8	1.4	1.4	1.6	1.6	
3f	0.9	1.0	1.0	1.1	0.8	0.8	1.0	1.2	
3g	1.4	1.6	1.8	2.0	1.2	1.4	1.6	1.8	
3h	1.0	1.0	1.2	1.2	1.0	1.0	1.1	1.1	
3i	1.4	1.5	1.6	1.8	1.4	1.5	1.6	1.8	
3j	0.8	0.8	1.0	1.0	0.8	1.0	1.1	1.1	
3k	0.9	1.0	1.0	1.1	0.6	0.8	1.0	1.2	
31	0.8	1.0	1.2	1.2	0.8	0.9	0.9	1.0	
3m	1.5	1.5	1.7	1.9	1.2	1.4	1.6	1.7	
3n	1.0	1.0	1.1	1.1	0.8	1.0	1.0	1.1	
3о	0.8	0.8	1.0	1.0	0.6	0.8	1.0	1.0	
3р	1.4	1.4	1.6	1.8	1.4	1.5	1.5	1.6	
Strep.	1.3	1.4	1.6	1.8	1.3	1.4	1.6	1.6	

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-2351

ISSN (Online) 2581-9429

International Journal of Advanced Research in Science, Communication and Technology [JARSCT

Volume 12, Issue 4, December 2021

Table II: Antifungal activities of α-aminophosphonates

			A	ntifung	al (zone	of inh	ibition	in cm)					
	Fusariun			oxysporum		Macrophoniaphaseolina				Aspergillusflavus			
Entry	25	50	75	100	25	50	75	100	25	50	75	100	
3a	1.1	1.2	1.4	1.6	1.2	1.4	1.6	1.8	1.0	1.2	1.4	1.6	
3b	0.6	0.8	1.0	1.0	0.7	0.8	0.8	1.0	0.6	0.6	0.8	0.8	
3c	1.2	1.2	1.4	1.8	1.2	1.4	1.4	1.6	1.0	1.0	1.2	1.4	
3d	1.4	1.4	1.5	1.7	0.9	1.3	1.3	1.4	0.9	1.3	1.3	1.5	
3e	1.2	1.3	1.4	1.5	1.0	1.2	1.2	1.6	0.8	1.0	1.2	1.6	
3f	1.0	1.2	1.2	1.5	0.9	1.2	1.3	1.6	0.8	0.8	1.2	1.4	
3g	1.1	1.1	1.2	1.4	1.0	1.2	1.6	1.8	1.0	1.2	1.4	1.7	
3h	0.8	1.0	1.2	1.2	0.8	0.9	1.0	1.1	0.5	0.7	0.8	0.9	
3i	0.6	0.8	0.8	1.0	0.6	0.7	0.7	0.9	0.5	0.6	0.8	0.8	
3 j	1.2	1.2	1.4	1.6	1.0	1.0	1.4	1.5	1.0	1.0	1.4	1.4	
3k	0.6	0.7	0.9	0.9	0.5	0.6	0.7	0.9	0.5	0.6	0.8	0.7	
31	1.1	1.2	1.4	1.7	1.0	1.1	1.3	1.5	0.8	1.0	1.4	1.5	
3m	0.7	0.8	0.8	1.0	0.6	0.6	0.8	0.8	0.6	0.6	0.7	0.8	
3n	1.0	1.1	1.2	1.4	0.8	1.1	1.4	1.7	0.7	1.0	1.2	1.4	
30	0.5	0.6	0.8	0.8	0.6	0.6	0.7	0.8	0.6	0.7	0.8	0.9	
3p	1.0	1.3	1.5	1.7	1.0	1.1	1.3	1.5	0.8	1.0	1.4	1.6	
Carben.	1.0	1.2	1.3	1.6	1.0	1.2	1.4	1.6	0.8	0.9	1.3	1.5	

Scheme-1: a-aminophosphonate derivatives of 2-chloroquinolin-3-carbaldehydes

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_4
 R_5
 R_5
 R_4
 R_5
 R_5
 R_6
 R_7
 R_8
 R_8
 R_9
 R_9

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-2351

MARAGI

機動情報的計算性數

Managari bine nedeelinining waneed in Released hereased and Ananopal in the communication

Volume 48 hours & Presember \$664

	146	ELEMENTER F. H. F.	digential property of the	APPAR .	ri
1441	M	K	H,	1 1/4	[1]
11	H	H	H		1
M	CH	H	#		1
1	H	CH	H	1 1	1
1	H	M	CIP	1 11	1
1	C/M	W	H	11 1	· ·
N.	M	MB	N	11	1
1	COM	H	H	11	
6)	H	H	CIR		
· M	H	H	64	646	11
1	CM	H	11	CH	H
M	M	CM	H	CH	- 11
11	M	M	CH	CIP -	11
100	UM	H	11	CIP	Н
14	H	WII	11	(4),	11
· Ar	W.D	H	14	CH	11
19.	M	14	CH	CIL	11

11461411111144

South of the standard of the second section of the second of the second of the second section of the section of the section of the second section of the section of th

N+++++1++1

- (the Co. Mark take & Name & Paramete & Marca A. Kreme & Klassif A. Kretimer & Class An Parkin Control (1975), CCV
- 115 (1) 5105 amitt MAA-13 lange wel-like palambranch to aside 2 2 lake Window 2018 (1) 5105
- 419 114 5W. 2000 Nove 3 2 2 35

1 40 Hr. 1-11.

- 1421, 14 1916 with book book and with 2 April 3 2 state W. mail 2 43
- 140 H. 1816 Woods reguls gold not what to b. A bolich back it to private it to private to the control
- M. A. Pain, & Reinwei, Smithest W.S. 14, NAV
- 196. W. M. Abiton R. S. Khaker A. A. Kaned And Phana Chem 146 Mr. 5112, 144, 131
- 1990; R. Marigo, S. Romaka, S. Sarrina, S. P. Sarkera, R. Mellerina, P. Nickarini, P. Vigeramara, D. Simon, Him vog. Med. Cham., No. 25, 2012 2020
- 1969 X C Break G M. Krimbra A R. British Brown Mrd. Chem. Lett., 2414, 24, 3120.
- 111 111) 1111 All Martin Carlo Carlo State I & Designate I & Benderick D & 1824
- 1946 I I State & A Abertanton M Hallach Vice & May (Thom 2011, 40, 1967)
- CAS IN AM. WAY WALL ANALAS IS WALKED IN A 18 3 JULY IS MEDIUME & JULES 2 IS FEEL
- Commission & Barrier & Cartere & Monathan & Salante & Brine D. Victoria & District P. Dist
- [17] I. S. Kerr, S. A. Pairi, Sciences Pharmaceter, NVA, 18, 1101

ISSN (Online) 258

International Journal of Advanced Research in Science, Communication and Technology

Volume 12, Issue 4, December 2021

- 118]. A. Srivastava, M. K. Singh, R. M. Singh, Indian J. Chem., 2005, 45B, 292
- [19]. S. Pramilla, S. P. Garg, S. R. Nautiyal, Indian J. Hetero cycl. Chem., 1998, 7, 201
- [20]. N. Ahmed, K. G. Brahmbhatt, S. Sabde, D. Mitra, I. P. Singh, K. K. Bhutani, Bio org. Med. Chem., 2010, 18, 2872
- [21]. H. P. Heinz, H. C. Milhahn, E. Eckart, J. Mcd. Chem., 1999, 42, 659
- [22]. V. V. Kouznetsov, L. Y. V. Méndez, S. M. Leal, U. M. Cruz, C. A. Coronado, C. M. M. Gomez, A. R. R. Bohorquez, P. E. Rivero, Lett. Drug Design Discov. 2007, 4, 293
- [23]. I. Saito, S. Sando, K. Nakatani, Bio Org. Med. Chem. 2001, 9, 2381
- [24]. O. Meth-Cohn, Heterocycles 1993, 35, 539-557, and references cited therein.
- [25]. S. P.Rajendran, M. Manonmoni, S.Vijaya-Lakshmi, Org. Prep. Proced.Int. 1994,26. 383-385.
- [26]. E. B. Maryanoff, A. B. Reitz, Chem. Rev. 1989, 89, 863.
- [27]. S. B. Hang, T. S. Mullins, H. Shim, F. M. Raushal, Biochemistry 1997, 36, 9022.
- [28]. T. S.Widlanski, J. K. Myer, B.Stec, K. M. Holtz, E. R. Kantroewitz, Chem. Biol. 1997, 4, 489.
- [29]. F. Maurer, H. J.Riebel, I.Hammann, W. Behrenz, B. Homeyer, Ger. Offen. 2533601, 1977.
- [30]. Z.V.Molodykh, I.A.Aleksandrova, R.U.Belyalov, T.K.Gazizor, V.S. Reznik, Khim. Farm.Zh. 1990, 24, 136-139.
- [31]. G.L. Drake, T.A. Calamari, In Industrial Uses of Phosphonates (Review); Hilder Brand, R.L. Ed.; CRC Press: Boca Raton, FL, 1983; Chapter 7.
- [32]. S.C. Fields, Tetrahedron1999, 55, 12237-12273.
- [33]. T.Yokomatsu, Y. Yoshida, S. Shibuya, J. Org. Chem. 1994, 59, 7930-7933.
- [34]. F.Eymery, B.Iorga, P. Savignac, Tetrahedron 1999, 55, 13109.
- [35]. K. Praveen Kumar Tetrahedron Lett.2001, 42, 3219.
- [36]. Oramay L &Kamplmacher E H, Ingram M, Mossel D, The Significance of Bacillus cereus food poisoning in Hungary, In the microbiology of dried foods, 1969, 279.
- [37]. Chakraborty P, A Text Book of Microbiology, New Central Book Agency (P) Ltd,, Calcutta, India, 2000,
- [38]. Nene Y L & Thapliyal P N, Fungicides In Plant Disease Control (Oxford & IBH Public, New Delhi), 1982, 192.

A.V. Education Society Degloor College Degloor