Alcohols and epoxides

B. Sc | Year (Semester-II)

Presented by

Dr. Anil Chidrawar

Head

Degloor College, Degloor

Chapter-4 : Alcohols and Epoxides

A] Alcohols :

- "Organic compounds in which -OH group is attached to saturated carbon atom are called as alcohols."
- They are also called as alkanols.
- The general molecular formula of alcohol is C_nH_{2n+1}OH Where, n - no. of carbon atoms.
 They are represented as R-OH Where, R - alkyl groups.
 Ex. CH₃-OH, CH₃-CH₂-OH
 - Methyl alcohol Ethyl alcohol

Classification of alcohols

- Depending on number of -OH groups alcohols are classified as follows.
- 1) Monohydric alcohols:

Alcohols containing one hydroxyl group (-OH group) are called as monohydric alcohols.

- Ex. i) CH₃-OH
 Methyl alcohol
 ii) CH₃-CH₂-OH
 Ethyl alcohol
- 2) Dihydric alcohols :

Alcohols containing two hydroxyl groups (-OH group) are called as dihydric alcohols.

• Ex.
$$CH_2 - OH$$

| Ethylene glycol
 $CH_2 - OH$

• 3) Trihydric alcohols :

Alcohols containing three hydroxyl groups (-OH group) are called as trihydric alcohols.

• 4) Polyhydric alcohols:

Alcohols containing more than three hydroxyl groups (-OH group) are called polyhydric alcohols.

• Ex. CH_2 -OH | (CHOH)₄ sorbitol | CH_2 -OH

Dihydric Alcohols : Ethylene glycol

Prepration Methods :

a) From Ethene (ethylene) :

Hydrolyxation of Ethene with cold dilute alkaline KMnO4 gives ethylene glycol.

$$\begin{array}{c} CH_{2} \\ \parallel \\ CH_{2} \end{array} + H_{2}O + [O] \end{array} \xrightarrow{\text{cold KMnO}_{4}} \begin{array}{c} CH_{2} - OH \\ \parallel \\ CH_{2} - OH \end{array}$$

$$\begin{array}{c} CH_{2} - OH \\ CH_{2} - OH \end{array}$$

$$\begin{array}{c} CH_{2} - OH \\ CH_{2} - OH \end{array}$$

$$\begin{array}{c} CH_{2} - OH \\ CH_{2} - OH \end{array}$$

b) From 1,2-dihaloalkene (1,2-dibromo ethane) :

1,2-dibromo ethane on heated with aq. Solution of Na_2CO_3 gives ethylene glycol.

$$\begin{array}{rcl} H_2C - Br \\ | & + & Na_2CO_3 + & H_2O \end{array} \xrightarrow{\Delta} & \begin{array}{c} CH_2 - & OH \\ | & + & CO_2 + & 2NaBr \\ CH_2 - & OH \end{array}$$

$$1,2 \text{-dibromo ethane} & \text{ethylene glycol} \end{array}$$

Trihydric alcohols

Alcohols containing three hydroxyl groups (-OH group) are called as trihydric alcohols.

Prepration methods of Glycerol

a) From fats and oils

 Fats and oils on alkaline hydrolysis to give glycerol and salts of long chain acids called as soaps.

b) From Propene

Propene on reaction with chlorine, NaOH and HOCI gives glycerol.

The overall reaction take place in following four steps :

Step-I : Propene react with CI_2 at 600^oC gives ally chloride.

$$CH_{3}-CH=CH_{2} + Cl_{2} \xrightarrow{600^{0}C} H_{2}C-CH=CH_{2} + HCl$$
Propene
$$I_{CI} Allyl chloride$$

Step-II : Allyl chloride react with dil. NaOH gives allyl alcohol.

$$\begin{array}{cccc} H_2C - CH = CH_2 & + & NaOH \longrightarrow & H_2C - CH = CH_2 & + & NaCI \\ I & & dil. & & I \\ CI & & OH \\ Allyl chloride & & Allyl alcohol \end{array}$$

 Step-III : Allyl alcohol react with HOCI gives chlorohydrin according to M. rule.

Step-IV : Chlorohydrin react with dil. NaOH gives glycerol.

Chemical reactions of Glycerol

a) Reaction with HNO₃

Glycerol react with HNO_3 in the presence of H_2SO_4 gives glyceryltrinitrate or nitroglycerine. It is used as explosive.

b) Reaction with HI

i. When glycerol react with small amount of HI gives allyl iodide.

ii. When glycerol react with large amount of HI gives isopropyl iodide.

c) Reaction with Acetyl Chloride

Glycerol react with three molecules of acetyl chloride gives glyceryl triacetate.

B) Epoxides

 Epoxides are cyclic ethers in which the ethereal oxygen is a part of three membered ring. They are also called as 'Oxiranes'

IUPAC nomenclature of Epoxides

Oxirane

2-methyl oxirane

2,3-dimethyl oxirane

2-ethyl oxirane

Chemical reactions of Epoxides

a) Acid catalysed ring opening of epoxide :

- Propylene oxide (2-methyl oxirane) on acid catalysed ring opening gives propane-1,2-diol through more stable sec. carbocation.
- In acid catalysed ring opening reaction of unsymmetrical epoxide, nucleophilic attack on more substituted carbon.

b) Base catalysed ring opening of epoxide :

- Propylene oxide (2-methyl oxirane) on base catalysed ring opening gives 1-amino-2-propanol.
- In base catalysed ring opening reaction of unsymmetrical epoxide, nucleophilic attack on less substituted carbon.

