B. Sc. III Year (Sem-VI)

Chapter-2

Infra Red Spectroscopy

Presented by :

Dr. Anil Chidrawar

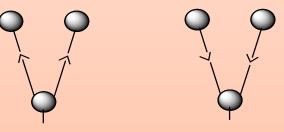
Associate prof. & Head

Department of Chemistry,

Degloor College, Degloor.

Introduction

- IR spectroscopy is used for detection of functional group in known and unknown compounds.
- In IR spectroscopy absorption of radiation takes place by sample, hence it is the kind of absorption spectroscopy.
- The Infra Red region of electromagnetic radiation is extended from 0.5µ to 200µ or 20000 cm⁻¹ to 50 cm⁻¹.
- IR region is divided in three sub regions as follows.
- a) Near IR region : 0.5μ to 2.5μ (20000cm⁻¹ to 4000cm⁻¹)
- b) Middle IR region : 2.5μ to 15μ (4000cm⁻¹ to 667cm⁻¹)
- c) Far IR region : 15μ to 200μ (667cm⁻¹ to 50cm⁻¹)

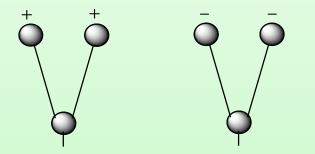

IR Region :

- The most important region for organic chemist is middle IR region or vibrational IR region i.e. 4000cm⁻¹ to 667cm⁻¹
- When the IR radiation is passed through sample in this region, compound undergo molecular vibration.

Types of Vibrations

- There are main two types of vibrations :
- a) Stretching Vibrations :
- In this type of vibration, the distance between two atoms gets increased or decreased from central atom without affecting bond axis. Such type of vibration is called as stretching vibrations.
- Stretching vibrations are of two types :
- i) Symmetric Stretching :
- In this stretching vibration, movement of atoms with respect to central atom in the same direction.

ii) Asymmetric Stretching :


 In this stretching vibration, one of the atom approaches to central atom while other away from it.

b) Bending Vibrations :

In this type of vibration, change in the position of atoms with respect to the original bond axis. Such type of vibration is called as bending vibrations.

- There are four types of bending vibrations :
- i) Scissoring : In this type of vibration, two atoms approaches to each other with change in their bond angle.

 ii) Rocking : In this type of vibration, movement of two atoms in the same direction. iii) Wagging : In this type of vibration, two atoms move up and down with respect to plane of the central atom.

 iv) Twisting : In this type of vibration, one of the atom move up to the plane and other moves down to the plane with respect to central atom.

Functional group Region

- The region between 4000 cm⁻¹ to 1400 cm⁻¹ is called as functional group region. Most common functional groups shows absorption band in this region due to stretching vibrations.
- The characteristics IR group frequencies of various functional groups are discussed as follows :

S.No.	Examples	Functional group	IR region
1	Alkanes	C-H	3000-2800 cm ⁻¹
2	Alkenes	=C-H	3100-3000 cm ⁻¹
		C=C	1670-1560 cm ⁻¹
3	Alkynes	≡C-H	3300-3100 cm ⁻¹
		C≡C	2200-2100 cm ⁻¹
4	Alcohols,	-OH	3600-3200 cm ⁻¹
	phenols		

Ì	l	í	1	l
		ľ	ľ	
		T		
	J	ł		

5	Carboxylic acids	-COOH	3600-2500 cm ⁻¹
6	Aldehydes	C-H of –CHO	2900-2700 cm ⁻¹
7	Ketones,amide,	>C=O	1850-1650 cm ⁻¹
	ester, aldehyde		
8	Aromatic	C=C	1600-1400 cm ⁻¹
	compounds	=C-H	3100-3000 cm ⁻¹
9	Nitro compound	-NO ₂	1500-1200 cm ⁻¹
10	Amines	N-H	3600-3200 cm ⁻¹
11	Cyanides	C≡N	2280-2250 cm ⁻¹

Finger Print Region

- The region between 1400 cm⁻¹ to 667 cm⁻¹ is known as Finger print region. In this region absorption band caused due to stretching and bending vibrations.
- Finger print region is divided into following three regions :
- a) Region between 1400 cm⁻¹ to 1300 cm⁻¹:
- Appearance of doublet near 1380 cm⁻¹ shows presence of tertiary butyl group. Out of two strong bands of -NO₂ group, one appear in finger print region at 1350 cm⁻¹.

b) Region between 1300 cm⁻¹ to 1000 cm⁻¹:

- Alcohols, esters lactones and acid anhydride shows characteristics absorption in this region.
- In alcohol C-O stretching of primary alcohol appears at 1050 cm⁻¹, C-O stretching of secondary alcohol appears at 1100 cm⁻¹ and C-O stretching of tertiary alcohol appears at 1150 cm⁻¹.
- In phenol C-O stretching appears at 1200 cm⁻¹ and in ether C-O stretching appears at 1070 cm⁻¹
- c) Region between 1000 cm⁻¹ to 667 cm⁻¹:
- In monosubstituted benzene absorption band at 710-690 cm⁻¹,
- ortho disubstituted benzene appears at 770-735 cm⁻¹,
- m-disubstituted benzene appears at 810-770 cm⁻¹
- p-disubstituted benzene appears at 850-810 cm⁻¹.

How will you distinguish between primary, secondary and tertiary alcohol by IR spectroscopy

- In primary alcohol, C-O stretching of appears at 1050 cm⁻¹, e.g. In 1-propanol C-O absorption band appears at 1050 cm⁻¹
- In secondary alcohol, C-O stretching of appears at 1100 cm⁻¹, e.g. In 2-propanol C-O absorption band appears at 1100 cm⁻¹
- In tertiary alcohol, C-O stretching of appears at 1150 cm⁻¹, e.g. In 2-methyl-2-propanol C-O absorption band appears at 1150 cm⁻¹
- Due to different IR values for C-O stretching of primary, secondary and tertiary alcohol, we can differentiate primary secondary and tertiary alcohol by using IR spectroscopy.

Interpretation of IR spectra of following Organic compounds :

• 1] Ethane : CH_3 - CH_3

2950 cm⁻¹ due to C-H stretching

• 2] Ethene : $CH_2 = CH_2$

3080 cm⁻¹ due to =C-H stretching

1650 cm⁻¹ due to C=C stretching

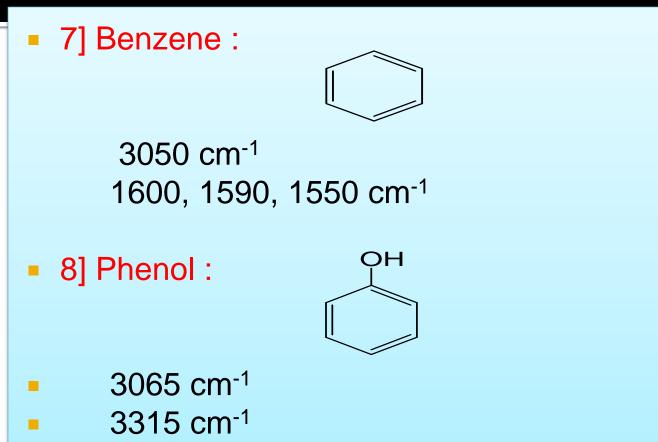
3] Ethyne : CH≡CH

3280 cm⁻¹ due to \equiv C-H stretching

2150 cm⁻¹ due to C=C stretching

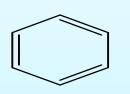
4] 1-propanol : CH₃-CH₂-CH₂-OH
 2981 cm⁻¹
 3391 cm⁻¹
 1050 cm⁻¹

5] 2-propanol :


OH | CH₃-CH-CH₃

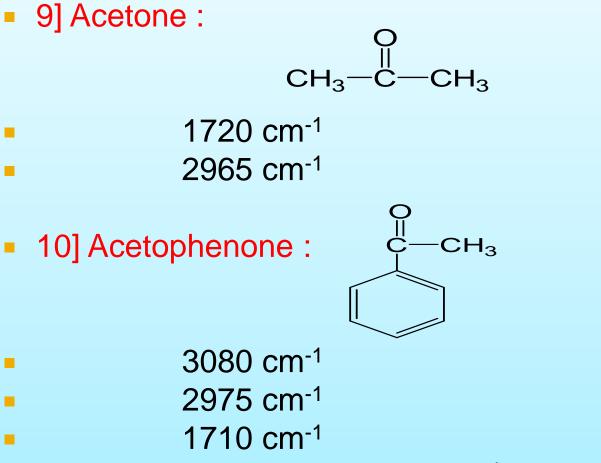
2980 cm⁻¹ 3370 cm⁻¹ 1100 cm⁻¹

6] 2-methyl-2-propanol (t-butyl alcohol) :

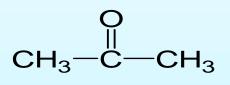

2990 cm⁻¹ 3325 cm⁻¹ 1150 cm⁻¹

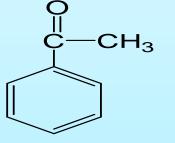
4] 1-propanol : CH₃-CH₂-CH₂-OH 2981 cm⁻¹ due to C-H stretching 3391 cm⁻¹ broad strong band due to O-H stretching 1050 cm⁻¹ due to C-O stretching OH 5] 2-propanol : CH₃-CH-CH₃ 2980 cm⁻¹ due to C-H stretching 3370 cm⁻¹ broad strong band due to O-H stretching 1100 cm⁻¹ due to C-O stretching 6] 2-methyl-2-propanol (t-butyl alcohol) : OHCH₃—CH₃—CH₃ 2990 cm⁻¹ due to C-H stretching 3325 cm⁻¹ broad strong band due to O-H stretching 1150 cm⁻¹ due to C-O stretching

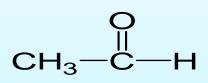

- 1200 cm⁻¹
- 1620, 1590, 1495 cm⁻¹



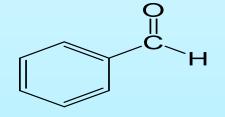
3050 cm⁻¹ due to Ar-H stretching 1600, 1590, 1550 cm⁻¹ due to C=C stretching


• 8] Phenol :

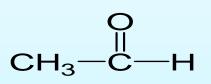

- 3065 cm⁻¹ due to Ar-H stretching
- 3315 cm⁻¹ broad strong band due to O-H stretching
- 1200 cm⁻¹ due to C-O stretching
- 1620, 1590, 1495 cm⁻¹ due to C=C stretching


9] Acetone :

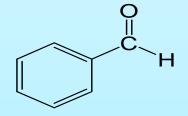
- 1720 cm⁻¹ due to C=O stretching
 2965 cm⁻¹ due to C-H stretching
- 10] Acetophenone :



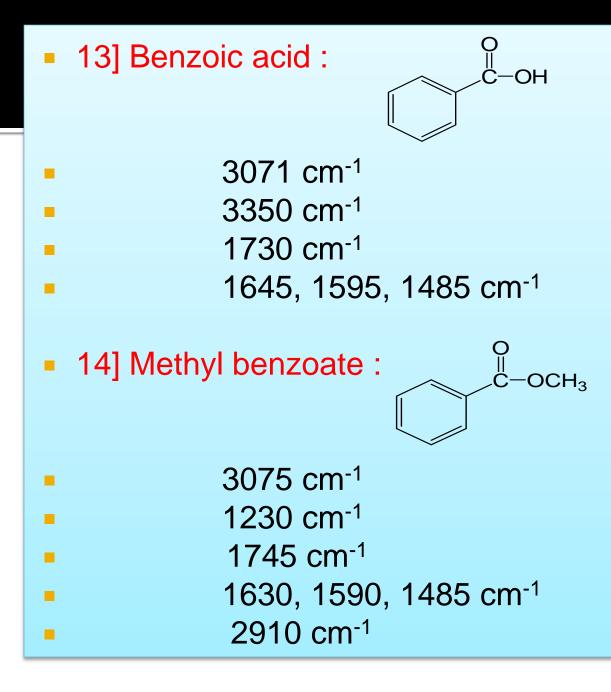
3080 cm⁻¹ due to Ar-H stretching 2975 cm⁻¹ due to C-H stretching 1710 cm⁻¹ due to C=O stretching 1620, 1575, 1500 cm⁻¹ due to C=C stretching • 11] Acetaldehyde :

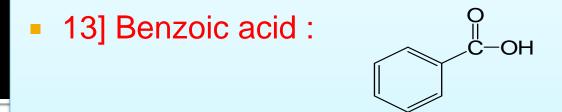

- 1745 cm⁻¹
- 2965 cm⁻¹

- 2700, 2850 cm⁻¹
- 12] Benzaldehyde :

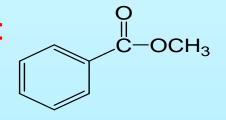


- 3071 cm⁻¹
 - 1725 cm⁻¹
 - 2730 cm⁻¹
 - 1620, 1575, 1500 cm⁻¹

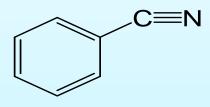

11] Acetaldehyde :

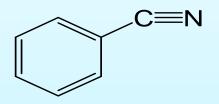


- 1745 cm⁻¹ due to C=O stretching
- 2965 cm⁻¹ due to C-H stretching
- 2700, 2850 cm⁻¹ due to C-H stretching of –CHO
- 12] Benzaldehyde :



3071 cm⁻¹ due to Ar-H stretching 1725 cm⁻¹ due to C=O stretching 2730 cm⁻¹ due to C-H stretching of –CHO 1620, 1575, 1500 cm⁻¹ due to C=C stretching




- 3071 cm⁻¹ due to Ar-H stretching
 - 3350 cm⁻¹ due to O-H stretching
- 1730 cm⁻¹ due to C=O stretching
 - 1645, 1595, 1485 cm⁻¹ due to C=C stretching
- 14] Methyl benzoate :

3075 cm⁻¹ due to Ar-H stretching 1230 cm⁻¹ due to C-O stretching of ester 1745 cm⁻¹ due to C=O stretching of ester 1630, 1590, 1485 cm⁻¹ due to C=C stretching 2910 cm⁻¹ due to C-H stretching • 15] Phenyl cyanide:

3075 cm⁻¹ 2210 cm⁻¹ 1630, 1590, 1485 cm⁻¹ • 15] Phenyl cyanide:

3075 cm⁻¹ due to Ar-H stretching 2210 cm⁻¹ due to C \equiv N stretching 1630, 1590, 1485 cm⁻¹ due to C=C stretching

Hooks Law :

- Hooks law is applicable to determine the vibrational frequency of absorption band. The stretching vibrational frequency of a bond can be calculated by applying Hooks law.
- " If bond strength increases and the reduced mass decreases the value of the vibrational frequency increases." Mathematically Hooks law can be represented as ...

Vibrational frequency (v) =
$$\frac{1}{2\pi c} \left[\frac{k}{\frac{m1.m2}{m1+m2}} \right]^{1/2} = \frac{1}{2\pi c} \sqrt{\frac{k}{u}}$$

• Where, μ (Reduced mass) = $\frac{m1.m2}{m1 + m2}$

c = Velocity of radiation k = Force constant

