The *d*-Block Elements. General properties

Mr. Kale Vinod N.

Why Study Descriptive Chemistry of Transition Metals

- Transition metals are found in nature
 - Rocks and minerals contain transition metals
 - The color of many gemstones is due to the presence of transition metal ions
 - Rubies are red due to Cr
 - Sapphires are blue due to presence of Fe and Ti

 Many biomolecules contain transition metals that are involved in the functions of these biomolecules

- Vitamin B12 contains Co
- Hemoglobin, myoglobin, and cytochrome C contain Fe

Why Study Descriptive Chemistry of Transition Metals

- Transition metals and their compounds have many useful applications
 - Fe is used to make steel and stainless steel
 - Ti is used to make lightweight alloys
 - Transition metal compounds are used as pigments
 - TiO_2 = white
 - $PbCrO_4 = yellow$
 - Fe₄[Fe(CN)₆]₃ (prussian blue)= blue
 - Transition metal compounds are used in many industrial processes

Myoglobin, a protein that stores O₂ in cells

Coordination Environment of Fe²⁺ in Oxymyoglobin and Oxyhemoglobin

Ferrichrome (Involved in Fe transport in bacteria)

Periodic Table

d-Block Transition Elements

Most have partially occupied d subshells in common oxidation states

Energy			4 p						
	4s				3d	1			
			Зр	11	1↓	11			
	3s	1↓							
			2р	1↓	11	1↓			
	2s	1↓		Sc					
	1s $\uparrow \downarrow$ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹ 4s							s ²	

Electronic Configurations

Element	Configuration				
Sc	[Ar]3d ¹ 4s ²				
Ti	[Ar]3d ² 4s ²				
V	[Ar]3d ³ 4s ²				
Cr	[Ar]3d ⁵ 4s ¹				
Mn	[Ar]3d ⁵ 4s ²				

$[Ar] = 1s^2 2s^2 2p^6 3s^2 3p^6$

Electronic Configurations

Element	Configuration
Fe	[Ar] 3d ⁶ 4s ²
Со	[Ar] 3d ⁷ 4s ²
Ni	[Ar] 3d ⁸ 4s ²
Cu	[Ar]3d ¹⁰ 4s ¹
Zn	[Ar]3d ¹⁰ 4s ²

$[Ar] = 1s^2 2s^2 2p^6 3s^2 3p^6$

General Properties of the *d*-Block Elements and Their Trends

- Fourth-period *d*-block elements form ionic bonds with somewhat less ionic character than do the metals of the *s*-block.
- Lower oxidation states (+2, +3) usually correspond to ionic character.
- For Co through Zn, relative energies of the 4s and 3d subshells are such that few (or no) 3d electrons are lost in forming ions.

Table 22.1 Selected Properties of the d-Block Elements of the Fourth Period											
	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	
Atomic number	21	22	23	24	25	26	27	28	29	30	
Electron configuration ^a	$3d^{1}4s^{2}$	$3d^24s^2$	$3d^{3}4s^{2}$	$3d^{5}4s^{1}$	$3d^{5}4s^{2}$	$3d^{6}4s^{2}$	$3d^{7}4s^{2}$	$3d^{8}4s^{2}$	$3d^{10}4s^1$	$3d^{10}4s^2$	
Electronegativity	1.4	1.5	1.6	1.7	1.6	1.8	1.9	1.9	1.9	1.7	
Common cations	3+	2+, 3+	2+,3+	2+, 3+	2+, 3+	2+, 3+	2+, 3+	2 +	1+, 2+	2+	
Common positive oxidation numbers ^b	3	2, 3, 4	2, 3, 4	2, 3, 6	2, 3, 4 6, 7	2, 3, 6	2, 3	2 , 3	1, 2	2	
Atomic radius, pm	161	145	132	125	124	124	125	125	128	133	
E°, V^{c}	-2.03	-1.63	-1.13	-0.90	-1.18	-0.440	-0.277	-0.257	+0.340	-0.763	
Melting point, °C	1397	1672	1710	1900	1244	1530	1495	1455	1083	420	
Density, g/cm^3	3.00	4.50	6.11	7.14	7.43	7.87	8.90	8.91	8.95	7.14	
Electrical conductivity ^d	3	4	6	12	1	16	25	23	95	27	
Thermal conductivity ^d	4	5	7	22	2	19	23	21	93	27	

^a Each atom has an argon core configuration.

^b The most important oxidation numbers are printed in red.

^c For the reduction $M^{2+}(aq) + 2e^{-} \longrightarrow M(s)$ [except for Sc, where the ion is $Sc^{3+}(aq)$].

^d Electrical and thermal conductivities are on an arbitrary scale relative to 100 for silver, the best metallic conductor.

Some Properties of the Fourth Period *d*-Block

- In the fourth-period *d*-block, only scandium is active enough to displace H₂ from H₂O.
- These elements have moderate to high melting points and moderately high densities.
- Electrical and thermal conductivities of these elements ar very high. Copper is second only to silver in electrical conductivity.

Fig. 8.1: Trends in melting points of transition elements

Atomic Radii of the *d*-Block Elements

- Size does not appear to increase significantly between fifth and sixth period elements.
- The electrons in 4*f* orbitals are not very good at screening valence electrons from the nucleus.
- Thus, the strength of attraction of valence electrons to the nucleus is greater than expected in the sixth period. The phenomenon is known as the *lanthanide contraction*.

Characteristic properties:

- <u>Color:</u> The complexes of the d-block metal ions are usually colored, except, very often, those of d⁰ and d¹⁰ metal ions. The colors are due to:
 - a) electronic transitions of d-electrons within the d subshell. These are known as $d \rightarrow d$ transitions. d^0 and d^{10} metal ions do not show these transitions.
 - b) electronic transitions from the metal ion to the ligand $(M \rightarrow L \text{ transitions})$ or ligand to the metal ion $(L \rightarrow M \text{ transitions})$, which are known as charge-transfer transitions, and these can occur for d⁰ to d¹⁰ metal ions.
 - c) The ligands themselves may be colored, and this color may contribute to the color of the complex.

Characteristic properties:

Paramagnetism: When there are unpaired electrons in the d sub-shell, these will lead to paramagnetism. Thus, in $[Cr(H_2O)_6]^{3+}$ the three d electrons (it is d³) are unpaired. Thus, like the O₂ molecule which is paramagnetic, Cr(III) is paramagnetic. A d¹⁰ metal ion (e.g. Zn(II)) has a filled d sub-shell, and a d⁰ metal ion (e.g. Ti(IV)) has no d-electrons, so neither of these can be paramagnetic.

Variable oxidation states: Most d-block metal ions display variable oxidation states. Thus, for example, Mn displays oxidation states from Mn(-III) (in $[Mn(CO)(NO)_3]$) through Mn(0) (in $[Mn_2(CO)_{10}]$) to Mn(VII) (in $[MnO_4]^-$).

Oxidation states of first-row d-block ions:

Oxidation States of Transition Elements

Electronic Configurations of Transition Metal Ions

• Electronic configuration of Fe³⁺

- Electronic configuration of Fe²⁺
- $Fe 2e^- \rightarrow Fe^{2+}$ valence ns e⁻'s removed [Ar]3d⁶4s² [Ar]3d⁶ first

Characteristic properties:

<u>Complex-formation</u>: The d-block metal ions form a wide variety of complexes, of generally high stability, with ligands such as EDTA or F⁻, Cl⁻, and OH⁻, or ethylene diamine (en), as well as many others, much as was the case for the main group metal cations. Many of the d-block metal ions are powerful Lewis acids, as can be seen by comparison with some main group element cations:

metal ion:		Al ³⁺	Co ³⁺		Mg ²⁺	Zn ²⁺
<u>ionic radius (Å):</u>		0.54	0.55		0.74	0.74
log K ₁ (EDTA):		16.4	41.4		8.8	16.5
log K₁(OH⁻):	8.5	13.5		2.6	5.0	

The reason why the d-block cations are such strong Lewis acids will become clear as the course proceeds.

Coordination geometries:

