\title{

UNIT II \\ SCHRODINGER'S EQUATION \\

B.Sc. T.Y.(Physics)

x^{2} (

BY
Bhanudas Narwade
das Narwade

QUATION

QUATION

SCHRODINGER'S EQUATION:
(TIME-DEPENDENT FORM)
BASIC PHYSICAL PRINCIPLETHAT CANNOT BE DERIVED FROM ANYTHING ELSE

- The wave function ψ of particle moving freely in + direction of X axis is specified by

$$
\begin{align*}
\cdot \psi & =A e^{-i \omega\left(t-\frac{x}{v}\right)} \\
\cdot \omega & =2 \pi v \text { and } \mathrm{v}=\mathrm{v}
\end{align*}
$$

SCHRODINGER'S EQUATION:

 (TIME -DEPENDENT FORM)- The total energy E and momentum P of particle is
$\cdot E=h v=2 \pi \hbar \quad$ and $\lambda=\frac{h}{P}=\frac{2 \pi \hbar}{P}$
- Equation (2) becomes (equation of free particle)
- $\boldsymbol{\psi}=\boldsymbol{A} \boldsymbol{e}^{-(i / \hbar)(E t-P x)}$ (3)
- Eq. (3) Wave equivalent of unrestricted particle of The total energy E and momentum P of particle along $+X$ axis

SCHRODINGER'S EOUATION:

 (TIME-DEPENDENT FORM)- For motion of particle under various restrictions.
- Differential equation (3) twice with x gives
$\cdot \frac{\partial^{2} \psi}{\partial x^{2}}=\frac{-P^{2}}{\hbar^{2}} \psi--(4)$
$\therefore P^{2} \psi=-\hbar^{2} \frac{\partial^{2} \psi}{\partial x^{2}}-\cdots$ (5)

SCHRODINGER'S EQUATION:

(TIME-DEPENDENT FORM)

- Differential equation (3) once with t gives
$\cdot \frac{\partial \psi}{\partial t}=\frac{-E \psi}{\hbar}$
$\cdot \boldsymbol{E} \boldsymbol{\psi}=\frac{-\hbar}{i} \frac{\partial \psi}{\partial t}--(6)$
- At a speed less than velocity of light, total energy

E of particle is

SCHRODINGER'S EQUATION:

(TIME-DEPENDENT FORM)

- Total energy E = K.E. +P.E.
$\cdot E=\frac{p^{2}}{2 m}+\mathrm{U}(\mathrm{x}, \mathrm{t}) \quad(7)$
- U function represent influence of rest of universe
- Multiplying eq.n(7) by $\boldsymbol{\psi}$ on both sides
$\cdot E \psi=\frac{P^{2}}{2 m}+\mathrm{U} \psi---(8)$

SCHRODINGER'S EOUATION:

(TIME-DEPENDENT FORM)

- Substituting $E \psi$ and $P^{2} \psi$ from equation (6) and(5)
-Time dependent form of Schrodinger's equation
$\cdot i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+\mathrm{U} \Psi$
- In 3 dimensions
$\cdot i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)+U \psi$

