UNIIT: :I LOEIC GATES

BY

BHANUDAS NARWADE

ASST. PROF.

DEGLOOR COLLEGE,DEGLOOR

LOGIC GATES:

Logic Gate: Is an electronic circuit and are the basic building blocks of digital electronics.
It has one or more inputs and only one output.
Out put (0 or 1) depends on certain combinations of input
BASIC LOGIC GATES:
The basic logic gates are
NOT, AND and OR
DERIVED LOGIC GATES:
Derived logic gates are
NAND,NOR,X-OR X-NOR
Universal gates: NAND, NOR

BASIC GATES:

NOT GATE (INVERTER):

NOT also called Inverter
Used to complement or invert digital signal To change one logic level to opposite SYMBOL:

TRUTH TABLE:

BASIC GATES:

AND GATE :

Logical multiplication
Two or more input and only one output Boolean expression: $Y=A . B$ SYMBOL:

TRUTH TABLE:

Lamp- ON = "1" Lamp - OFF $=0^{-}$

A	B	Y
0	0	0
1	0	0
0	1	0
1	1	1

[^0]
BASIC GATES:

OR GATE :

Logical addition

Two or more input and only one output Boolean expression: $\mathrm{Y}=\mathrm{A}+\mathrm{B}$

(b) Electrical circuit

OR gate

Table Truth table of OR gate

Inputs		Output	
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A}+\mathbf{B}$	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

UNIVERSAL GATES:

NAND GATE :

Universal gate due to versatile in nature Two or more input and only one output Boolean expression: $Y=\overline{A B}$

Input		Output
A	B	$\mathrm{Y}=\overline{A \cdot B}$
0	0	1
0	1	1
1	0	1
1	1	0

UNIVERSAL GATES:

NOR GATE :

Universal gate due to versatile in nature Two or more input and only one output Boolean expression: $\mathrm{Y}=\overline{\mathrm{A}+\mathrm{B}}$

Input		Output
A	B	$\overline{\mathrm{A}+\mathrm{B}}$
0	0	1
0	1	0
1	0	0
1	1	0

X-OR GATE:

EXCLUSIVE-OR GATE :

Exclusive OR operation widely used in digital circuit Two or more input and only one output Can not be performed using basic gates Boolean expression: $Y=\bar{A} B+A \bar{B}$

A	B	$\mathrm{Y}=\mathrm{A} \oplus \mathrm{B}$
0	0	0
0	1	1
1	0	1
1	1	0

EX-NOR GATE:

EXCLUSIVE-NOR GATE :

Exclusive NOR is complement of Ex-OR Two or more input and only one output Can not be performed using basic gates Boolean expression: $Y=\bar{A} \bar{B}+A B$

inputs		output
A	B	\mathbf{Y}
0	0	1
0	1	0
1	0	0
1	1	1

UNIVERSAL PROPERTIES OF NAND:

All digital logic can be performed by using NAND gate 1) NOT from NAND:

BY connecting both or all inputs of NAND together For two input NAND Boolean expression is $Y=\overline{A . A} .=\bar{A}$

2) AND using NAND

Inverting the output of NAND gate AND operation will be formed
AND Gate

$$
\mathrm{Y}=\overline{\overline{\mathrm{A} \cdot \mathrm{~B}}}=\mathrm{A} \cdot \mathrm{~B}
$$

UNIVERSAL PROPERTIES OF NAND:

3) OR Gate from NAND Gate:

Inputs are inverted before applied to another NAND gate For two input NAND Boolean expression is

$$
Y=\overline{\bar{A} \cdot \bar{B}}=\overline{\bar{A}}+\overline{\bar{B}}=A+B
$$

4) NOR using NAND

Out put of OR is inverted to get NOR

UNIVERSAL PROPERTIES OF NOR:

1) NOT Gate from NOR Gate:

Connecting all inputs of NOR gate

 For two input NOR Boolean expression is$$
y=\overline{A+A}=\bar{A}
$$

2) AND using NOR

Input		Output
A	B	$\overline{\mathrm{~A}+\mathrm{B}}$
0	0	1
0	1	0
1	0	0
1	1	0

AND gate can be formed using NOR gate with inverted inputs

$$
\mathrm{Y}=\overline{\overline{\mathrm{A}}+\overline{\mathrm{B}}=\mathrm{A} \cdot \overline{\overline{\mathrm{~B}}}=\mathrm{A} \cdot \mathrm{~B}}
$$

UNIVERSAL PROPERTIES OF NOR:

3) OR Gate from NOR Gate:

Out put of NOR is inverted
For two input NOR Boolean expression is

Input		Output
A	B	$\overline{A+B}$
0	0	1
0	1	0
1	0	0
1	1	0

4) NAND using NOR

NAND gate can be formed using NOR gate with expressions

$$
\mathrm{Y}=\overline{\overline{\overline{\mathrm{A}}+\overline{\mathrm{B}}}}=\overline{\overline{\mathrm{A}} \cdot \overline{\overline{\mathrm{~B}}}}=\overline{\mathrm{A} \cdot \mathrm{~B}}
$$

LOGIC OPERATORS :

1) AND OPERATOR:

In Boolean algebra AND operator is denoted by(.) or no operator symbol at all Similar to multiplication in ordinary algebra
For example A.B = Y

A	B	$Y=A \cdot B$
0	0	0
0	1	0
1	0	0
1	1	1

2) OR OPERATOR:

Indicated by + sign
Similar to addition in ordinary algebra For example A+B =Y

A	B	$Y=A+B$
0	0	0
0	1	1
1	0	1
1	1	1

LOGIC OPERATORS :

3) NOT OPERATOR:

Used for complement or inversion
Symbol is bar on over variable
For example $\mathrm{A}=\overline{\mathrm{A}}$

$$
\overline{\overline{\mathrm{A}}}=\mathrm{A}
$$

BOOLEAN ALGEBRA LAWS AND RULES :

1) AND LAWS:

Law $1: \quad$ A. $0=0$
A

Law 2: \quad A.1=A
$A-D-A$
Law 3: \quad A.A=A

Law 4:
A. $\bar{A}=0$

BOOLEAN ALGEBRA LAWS AND RULES :

1) OR LAWS:

Law 5 : $\quad \mathrm{A}+0=\mathrm{A}$

Law 6:
$A+1=1$

Law 7:
$A+A=A-D-A$

Law 8:

$$
\mathrm{A}+\overline{\mathrm{A}}=1 \quad \mathrm{~A}
$$

BOOLEAN ALGEBRA LAWS AND RULES :

Commutative Law: order of variables in OR and AND operation is insignificant(allows change of position of variable)
Law 9 (Commutative law of addition)
: $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$

Law 10 (Commutative law of multiplication)
: A . B = B . A
Commutative laws

BOOLEAN ALGEBRA LAWS AND RULES :

Associative Law: order of grouping in OR and AND operation is insignificant(allows change of grouping)

Associative Law

- Associative Law for Addition $A+(B+C)=(A+B)+C$

Associative Law

- Associative Law for Multiplication A.(B.C) $=(A \cdot B) \cdot C$

BOOLEAN ALGEBRA LAWS AND RULES :

Distributive Law: factoring or multiplying of different terms in an expression is allowed.
Law $13: \mathrm{A} .(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
Law $14: A+(B \cdot C)=(A+B) .(A+C)$
Distributive law

Demorgan's first Theorem:

Statement: Complement of sum is equal to the product of complement

$$
\overline{\mathrm{A}+\mathrm{B}}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}}
$$

Proof:

\mathbf{A}	\mathbf{B}	$\overline{\mathbf{A}}$	$\overline{\mathbf{B}}$	$\mathbf{A}+\mathbf{B}$	$\overline{\mathrm{A}+\mathrm{B}}$	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

DE-MORGAN'S THEOREMS :

Demorgan's Second Theorem:

Statement: Complement of product is equal to the sum of complement

$$
\overline{\mathrm{A} \cdot \mathrm{~B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}}
$$

Proof:

\mathbf{A}	\mathbf{B}	$\overline{\mathbf{A}}$	$\overline{\mathbf{B}}$	$\mathbf{A} \cdot \mathbf{B}$	$\overline{\mathrm{A} \cdot \mathbf{B}}$	$\overline{\mathrm{A}}+\overline{\mathrm{B}}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

SIMPLIFICATION OF BOOLEAN EXPRESSIONS:

SIMPLIFICATION OF BOOLEAN EXPRESSIONS:

SIMPLIFICATION OF BOOLEAN EXPRESSIONS:

$$
\begin{aligned}
& \text { Ex.7) } \quad=A B+\overline{A C}+A \overline{B C}(A B+C) \\
& \text { Solution } y=A B+\overline{A C}+A \bar{B} C(A B+C) \\
&=A B+\overline{A C}+A \bar{B} C A B+A \bar{B} C C \\
&=A B+\overline{A C}+A \overline{B C} \\
&=A B+\bar{A}+\bar{C}+A \bar{B} C \\
&=A B+\bar{C}+\bar{A}+A \bar{B} C \\
&=A B+\bar{C}+\bar{A}+\bar{B} C \\
&=\bar{A}+A B+\bar{C}+\overline{B C} \\
&=\bar{A}+B+\bar{C}+\bar{B} \\
&=\bar{A}+\bar{C}+B+\bar{B} \\
&=\bar{A}+\bar{C}+1 \\
&=1 \\
&=W \bar{X}(W+Y)+W Y(\bar{W}+\bar{X}) \\
&=W \bar{X}(W+Y)+W Y(\bar{W}+\bar{X}) \\
&=W \bar{X} W+W \bar{X} Y+W Y \bar{W}+W Y \bar{X} \\
&=W \bar{X}+W \bar{X} Y+O+W Y \bar{X} \\
& \text { Ex 8) }=W \bar{X}(1+Y+Y) \\
& \text { Solution: } y=W \bar{X}(1) \\
&=W \\
&=W
\end{aligned}
$$

SIMPLIFICATION OF BOOLEAN EXPRESSIONS:

SUM -OF -PRODUCT FORM(SOP):

Product of two or more variables or their complements is AND function of those variables
Product of two variable can be $A B$, for three variable $A B C$, so on Sum/in Boolean algebra is same as OR function SOP expression is two or more AND fuctions OR ed together For example $\mathrm{AB}+\mathrm{CD}$ is SOP expression
AB $4 C D$
$\mathrm{ABC}+\mathrm{DEF}$
$A \bar{B} C+D \bar{E} F \bar{G}+A E F$
SOP can also contain a term with single variable $A+B C D+A C D$

SUM -OF -PRODUCT FORM(SOP):

Implement SOP expression using logic gates

PRODUCT OF SUMS FORM (POS):

POS expression is AND of two or more OR functions
For example ($\mathrm{A}+\mathrm{B}$). $(\mathrm{C}+\mathrm{D})$ is POS expression
$(\mathrm{A}+\mathrm{B}) \cdot(\mathrm{B}+\mathrm{C}+\mathrm{D})$
$(\bar{A}+B+C) .(D+\bar{E}+F)$
SOP can also contain a term with single variable $\mathrm{A}(\mathrm{B}+\overline{\mathrm{C}}+\overline{\mathrm{D}}) .(\mathrm{A}+\mathrm{C}+\mathrm{D})$

Implementation of POS Expressions

- Product-of-Sums expressions can be implemented using:
* 2-level OR-AND logic circuits
* 2-level NOR logic circuits
- OR-AND logic circuit

K－MAP（KARNAUGH MAPPING）：

Karnaugh mapping（K－map）is another method for reduction in logical function． Tool to perform systematic reduction of complex logical circuit into simplified equivalent circuits．
Used to simplify equations having two ，three，four ，five，six different input variables
Two variable map will require $2^{2}=4$ cells ，a three variable map require $2^{3}=8$ cells， 4 variable $2^{4}=16$ cells（For N variables 2^{N} cells required）

兩個變數之四格卡諾圖

K-MAP (KARNAUGH MAPPING):

Plotting a Boolean Expressions: SOP form of expression can be plotted on K map by placing 1 in each cell corresponding to term of SOP

For three variables $\bar{A} B \bar{C}+A \bar{B} C+A \bar{B} \bar{C}+A B C$

K-MAP (KARNAUGH MAPPING):

Plotting a Boolean Expressions: SOP form of expression can be plotted on K map by placing 1 in each cell corresponding to term of SOP
For example
$\overline{\mathrm{A}} \overline{\mathrm{B}}+\mathrm{A} \overline{\mathrm{B}}$

Grouping cells for simplification: Group 1 s that are adjacent as per following rules 1 Adjacent cells are cells differ by only a single variable for exam (ABCD and A B C \bar{D} are adjacent)
2 The 1 s in adjacent cells must be combined in groups of $1,2,4,8,16$ and so on
3 Each group of 1 s should be maximized to include largest number of adjacent cells
4 Eyery 1 on map must be included in at least one group
5 There can be overlapping groups if they include noncommon 1 s

K-MAP (KARNAUGH MAPPING):

Grouping cells for simplification:

K-MAP (KARNAUGH MAPPING):

Grouping cells for simplification:

(a)

K-MAP (KARNAUGH MAPPING):

Simplifying the expression:
When all 1 s are grouped, the mapped expression is ready for simplification 1 Each group of 1 s creates a product term composed of all variables that appears in only one form (uncomplemented or complemented) within the group
2 Variables that appear uncomplemented and complemented are eliminated
3 The final simplified expression is formed by summing the product terms of all the groups
Out $=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} C D+\bar{A} \bar{B} C \bar{D}$
$+A \bar{B} \bar{C} \bar{D}+A \bar{B} \bar{C} D+A \bar{B} C D+A \bar{B} C \bar{D}$
$\begin{array}{|c|c|c|c|c|}\hline A C D & & & \\ \hline B & 00 & 01 & 11 & 10 \\ 00 & 1 & 1 & 1 & 1 \\ 0 & 1 & & - & - \\ \hline 11 & & - & & \\$\cline { 2 - 5 } \& 10 \& 1 \& 1 \& 1\end{array}$)$

Out $=\bar{B}$

K-MAP (KARNAUGH MAPPING):

Simplifying the expression:

```
Out= \overline{A}\overline{B}CD+\overline{A}BCD+ABCD+A\overline{B}CD+AB\overline{C}\overline{D}+AB\overline{C}D+ABC\overline{D}
Cl
Out= AB + CD
```

$O u t=\bar{A} \bar{B} C D+\bar{A} B C D+A B C D+A \bar{B} C D+A B \bar{C} \bar{D}+A B \bar{C} D+A B C \bar{D}$

Out $=A B+C D$

K-MAP (KARNAUGH MAPPING):

Simplifying the expression:

$$
\text { Out }=\bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{D}+A B C D
$$

Using K map simplify the following expressions
$\mathrm{AB} C+\mathrm{A} \bar{B} C+A \bar{B} \bar{C}$

HALF ADDER:

- Half adder adds two bit binary and produces sum and carry
- Two input (A and B) and two outputs ($\mathrm{S}=(\mathrm{SUM}$) and $\mathrm{C}=\mathrm{CARRY})$ to half adder

Inputs		Outputs	
A	B	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

From truth table, Sum bit is a 1 only when input variables are not equal.
The sum can be expressed as exclusive OR of the input variable The output C is a 1 only when both A and B inputs are 1 Carry is expressed as AND of the input variables

HALF ADDER:

- Logical expression:
- $S=\bar{A} B+A \bar{B}=\mathrm{A} \oplus \mathrm{B}$
- $\mathrm{C}=\mathrm{A} . \mathrm{B}$

HALF ADDER:

- Half adder adds two bit binary and produces sum and carry

FULL ADDER:

- Half adder adds three bit binary and produces sum and carry
- Three input (A and B and Carry in) and two outputs ($\mathrm{S}=(\mathrm{SUM}$) and $\mathrm{C}=\mathrm{CARRY}$ out)to full adder

Input			Output	
\mathbf{A}	\mathbf{B}	$\boldsymbol{C}_{\mathrm{n}}$	sum^{2}	Carry
$\overline{0}$	0	0	0	0
$\overline{0}$	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Input			Output	
\mathbf{A}	B	C $_{\mathbf{n}}$	5 um	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$
=C_{\text {in }}(\bar{A} \bar{B}+A B)+\bar{C}_{i n}(A \bar{B}+\bar{A} B)
$$

$$
=C_{\text {in }}\left[(\bar{A}+B) \cdot(A+\bar{B})+\overline{C_{i n}}(A \bar{A}+\bar{A} B)\right.
$$

$$
=C_{\text {in }}(\bar{A} \bar{A} \cdot \bar{A} \bar{A})+\bar{C}_{\text {in }}(A \bar{B}+\bar{A} B)
$$

$$
=C_{\text {in }} \overline{(\bar{A} B+\bar{A} B)}+\bar{C}_{\text {Cin }}(\bar{A}+\bar{A} \bar{B})
$$

$$
=C_{i n} \oplus(A \bar{B}+\bar{A} B)
$$

$=C_{i n} \oplus(A \oplus B)$

$$
\begin{aligned}
\text { Carry } & =A B+A C_{i n}+B C_{i n} \\
& =A B+A C_{i n}(B+\bar{B})+B C_{i n}(A+\bar{A}) \\
& =A B+A B C_{i n}+A \bar{B} C_{i n}+A B C_{i n}+\bar{A} B C_{i n} \\
& =A B\left(1+C_{i n}+C_{i n}\right)+A \bar{B} C_{i n}+\bar{A} B C_{i n} \\
& =A B+A \bar{B} C_{i n}+\bar{A} B C_{i n} \\
& =A B+C_{i n}(A \bar{B}+\bar{A} B) \\
& =A B+C_{i n}(A \oplus B)
\end{aligned}
$$

FULL ADDER:

SELF STUDY:

Simplify the expressions using K map

1) $X=\bar{A} B \bar{C} D+A \bar{B} \bar{C} D+\bar{A} \bar{B} \bar{C} D+A B \bar{C} D+A B \bar{C} \bar{D}+A B C D$
2) $X=B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D+\bar{A} B C D+A B C D+A B C D$

SOLUTION:

Simplify the expressions using K map

1) $X=\bar{A} B \bar{C} D+A \bar{B} \bar{C} D+\bar{A} \bar{B} \bar{C} D+A B \bar{C} D+A B \bar{C} \bar{D}+A B C D$

$$
\not x=\bar{C} D+A B D+A B \bar{C}
$$

SOLUTION:

Simplify the expressions using K map

$$
\begin{aligned}
& X=B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D+\bar{A} B C D+A B C D+A B C D \\
& X=(A+\bar{A}) \cdot B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D+\bar{A} B C D+A B C D+A B C D \\
& X=A B \bar{C} \bar{D}+\bar{A} B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D+\bar{A} B C D+A B C D+A B C D
\end{aligned}
$$

[^0]: Switch B-Open $={ }^{*} 0^{-}$. Closed $={ }^{*} 1^{-}$

