

UNIT :ii LOGIC GATES

BY

BHANUDAS NARWADE ASST. PROF. DEGLOOR COLLEGE, DEGLOOR

LOGIC GATES:

Logic Gate: Is an electronic circuit and are the basic building blocks of digital electronics.It has one or more inputs and only one output.Out put (0 or 1) depends on certain combinations of input

BASIC LOGIC GATES: The basic logic gates are NOT, AND and OR DERIVED LOGIC GATES: Derived logic gates are NAND,NOR,X-OR X-NOR Universal gates: NAND, NOR

BASIC GATES:

NOT GATE (INVERTER):

NOT also called Inverter Used to complement or invert digital signal To change one logic level to opposite

SYMBOL:

Input	Output
Α	Y
0	1
1	0

BASIC GATES:

AND GATE :

Logical multiplication Two or more input and only one output Boolean expression: Y=A.B

SYMBOL:

TRUTH TABLE:

BASIC GATES:

OR GATE : Logical addition Two or more input and only one output Boolean expression: Y=A+B

(a) Logic Symbol

Fig

(b)Electrical circuit

OR gate

Table

Truth table of OR gate

Inp	outs	Output
A	в	Y = A + B
0	0	0
0	1	1
1	0	1
1	1	1

UNIVERSAL GATES:

NAND GATE :

Universal gate due to versatile in nature Two or more input and only one output Boolean expression: $Y = \overline{AB}$

Inp	out	Output
А	В	$Y = \overline{A.B}$
0	0	1
0	1	1
1	0	1
1	1	0

UNIVERSAL GATES:

NOR GATE :

Universal gate due to versatile in nature Two or more input and only one output Boolean expression: Y=A+B

Inp	Input	
А	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

X-OR GATE:

EXCLUSIVE-OR GATE :

Exclusive OR operation widely used in digital circuit Two or more input and only one output Can not be performed using basic gates Boolean expression: Y=A B+A B

EX-OR gate symbol

A	В	Y=A 🔶 B
0	0	0
0	1	1
1	0	1
1	1	0

EX-OR gate truth table

EX-NOR GATE:

EXCLUSIVE-NOR GATE :

Exclusive NOR is complement of Ex-OR Two or more input and only one output Can not be performed using basic gates Boolean expression: Y=A B+A B

inp	inputs		
Α	В	Y	
0	0	1	
0	1	0	
1	0	0	
1	1	1	

UNIVERSAL PROPERTIES OF NAND:

All digital logic can be performed by using NAND gate **1) NOT from NAND:**

BY connecting both or all inputs of NAND together For two input NAND Boolean expression is Y=A.A.=A

Inverting the output of NAND gate AND operation will be formed

NOT Gate

(Inverter)

$$Y = \overline{\overline{A.B}} = A.B$$

3)

UNIVERSAL PROPERTIES OF NAND:

OR Gate from NAND Gate:

Inputs are inverted before applied to another NAND gate For two input NAND Boolean expression is

$$Y = \overline{A} \cdot \overline{B} \cdot = \overline{A} + \overline{B} = A + B$$

4) NOR using NAND

Out put of OR is inverted to get NOR

BO

$$Y = \overline{\overline{A}}.\overline{\overline{B}} = \overline{\overline{\overline{A}}} + \overline{\overline{B}} = \overline{\overline{A}} + \overline{B}$$

UNIVERSAL PROPERTIES OF NOR:

1) NOT Gate from NOR Gate:

Connecting all inputs of NOR gate For two input NOR Boolean expression is

2) AND using NOR

AND gate can be formed using NOR gate with inverted inputs

NOT Gate (Inverter)

Buffer

 $Y = A + A = \overline{A}$

3)

 $Y = \overline{A + B} = A + B$

A+B

UNIVERSAL PROPERTIES OF NOR:

OR Gate from NOR Gate:

Out put of NOR is inverted For two input NOR Boolean expression is

NAND gate can be formed using NOR gate with expressions

$$Y = \overline{\overline{A} + \overline{B}} = \overline{\overline{\overline{A}} \cdot \overline{\overline{B}}} = \overline{\overline{A} \cdot \overline{B}}$$

OR Gate

LOGIC OPERATORS :

 AND OPERATOR: In Boolean algebra AND operator is denoted by(.) or no operator symbol at all Similar to multiplication in ordinary algebra For example A.B = Y

Α	В	Y=A.B
0	0	0
0	1	0
1	0	0
1	1	1

2) OR OPERATOR:
Indicated by + sign
Similar to addition in ordinary algebra
For example A+B =Y

Α	В	Y=A+B
0	0	0
0	1	1
1	0	1
1	1	1

LOGIC OPERATORS :

3) NOT OPERATOR: Used for complement or inversion Symbol is bar on over variable For example $A=\overline{A}$

$$\overline{A} = A$$

Commutative Law: order of variables in OR and AND operation is insignificant(allows change of position of variable) Law 9 (Commutative law of addition) : A + B = B + A

Law 10 (Commutative law of multiplication) $: A \cdot B = B \cdot A$

BOOLEAN ALGEBRA LAWS AND RULES : Associative Law: order of grouping in OR and AND operation is

insignificant(allows change of grouping)

Associative Law

Associative Law for Addition
 A + (B + C) = (A + B) + C

Associative Law

Associative Law for Multiplication
 A.(B.C) = (A.B).C

Distributive Law: factoring or multiplying of different terms in an expression is allowed.

- Law 13 : $A \cdot (B + C) = AB + AC$
- Law 14 : $A + (B \cdot C) = (A + B) \cdot (A + C)$

DE-MORGAN'S THEOREMS :

Demorgan's first Theorem:

Statement: Complement of sum is equal to the product of complement

$$A + B = A \cdot B$$

Proof:

Α	В	Ā	B	A+B	A+B	Ā·B
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

DE-MORGAN'S THEOREMS :

Demorgan's Second Theorem:

Statement: Complement of product is equal to the sum of complement

$$A \cdot B = A + B$$

Proof:

Α	В	Ā	B	A·B	A·B	$\overline{A} + \overline{B}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

A PROVIDENCE AND A PROVIDENCE AND		and the second
Ex.2) y.	=	AB + C
Solution y	=	AB+C
	-	AB.C O O A) X MOD CO
	=	$(\overline{A} + B) \cdot \overline{C}$
	=	AC+BC
Ex.3) X	=	$[(A + \overline{B}) (B + C)] \cdot B$
Solution X	=	$[(A + \overline{B}) (B + C)] \cdot B$
	=	$(A B + A C + \overline{B} B + \overline{B} C) \cdot B$
	=	$(A B + A C + 0 + \overline{B} C) \cdot B$
	=	ABB+ACB+BCB
	-	AB+ABC+0
		A B (1 + C)
	=	AB(1) $A + A + BA = V$ includes
Ex.4) X	= =	$ \begin{array}{c} \mathbf{A} \mathbf{B} \\ \overline{\mathbf{A}} \mathbf{B} \cdot \mathbf{B} + \mathbf{C} \end{array} $
Solution: x	=	$\overline{AB} \cdot \overline{B+C}$
	=	$(\overline{A} + \overline{B}) \cdot (\overline{B} \cdot \overline{C})$
	=	ABC+BBC
	=	ABC+BC
	=	
	=	BC[1]
	1. 1. 1. 1.	

Ex.5)	×	$= (AB \cdot C + D) \cdot AB$
Soluti	Part, Park I. M.	$= (AB \cdot C + D) \cdot AB$
	-	$\overline{(AB \cdot C + D)} + \overline{AB}$
		$(\overline{AB} + \overline{C} + \overline{D}) + \overline{AB}$
	-	$\overline{A} + \overline{B} + C + D + \overline{A} + \overline{B}$
		$\overline{A} + \overline{A} + \overline{B} + \overline{B} + C + D$
国际投资		A+B+C+D
	C. (1) C. (07.14)	14/5/57264/674/1275 = 14-5
S. Brite	Charles The Street of	A COMPANE OF STREET
	一般の「「「「な」」で 引きます。それのため」	
Ex.(6)	y =	AB+A+AB
Solution	y =	$\overline{AB} + \overline{A} + \overline{AB}$
	and the states in the second	这些小型ALICECCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
		$\overline{A} + \overline{B} + \overline{A} + \overline{A} \overline{B}$
		$A + \overline{A} + \overline{B} + \overline{A} B$
		$\overline{A} + \overline{B} + AB$
		$\overline{\overline{A} + \overline{B} + A}^{(a)} \cdot (\overline{a} + A) =$
		and the state of the second state of the second state and the second state of the seco
	=	A+A+B +OBA =
	=	1+B 08+08A =
		1
		o (1) 0 8 =
	Stand and the state of the	

Ex.7) y	=	$AB + \overline{AC} + \overline{ABC} (AB + C)$
Solution y	=	$AB + \overline{AC} + \overline{ABC}$ ($AB + C$)
	=	AB+AC+ABCAB+ABCC
	50	AB+AC+ABC
	=	AB+A+C+ABC
	=	AB+C+A+ABC
	. =	AB+C+A+BC
	=	$\overline{A} + AB + \overline{C} + \overline{B}C$
	=	$\overline{A} + B + \overline{C} + \overline{B}$
	=	$\overline{A} + \overline{C} + B + \overline{B}$
	=	$\overline{\mathbf{A}} + \overline{\mathbf{C}} + 1^{A} = \mathbf{A} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \mathbf{A} \end{bmatrix}$
	=	(1) A + 8 A) O + 6] A
		ALB+O AB+O
Ex 8) y	=1(0	$W \overline{X} (W + Y) + W Y (\overline{W} + \overline{X})$
Solution: y	=	$W \overline{X} (W + Y) + W Y (\overline{W} + \overline{X})$
	=	$W \overline{X} W + W \overline{X} Y + W Y \overline{W} + W Y \overline{X}$
	=	$W \overline{X} + W \overline{X} Y + 0 + W Y \overline{X}$
	=	$W \overline{X} (1 + Y + Y)$
	=	W x (1)
	=	wx

		1 cot
Ex. 9) y		$A + \overline{B}C(A + \overline{B}C)$
		A+BC(A, E, E
00	SA'	$A + \overline{B}C(A + B + \overline{C})$
	-	A+BCA+BCB+BCC
	-	$A + \overline{B}CA + 0 + 0$
		A+ABC
		A (1 + B C)
	=	A (1)
	-	A = 0 - 8 + A
Ex.10) y		$A [B + C (\overline{A B + A C})]$
Solution y	_	A [B + C (A B + A C)]
		$A [B + C (\overline{AB} \cdot \overline{AC})]$
1. A.	=	$A [B + C (\overline{A} + \overline{B}) \cdot (\overline{A} + \overline{C})]$
		$A [B + (\overline{A} + \overline{B}) \cdot \overline{A}C]$
	-	A [B + AAC + ABC]
· · · · · · · · · · · · · · · · · · ·	=	A [B + AC + ABC]
	=	AB+AAC+AABC
	=	AB+0+0 (1) XW
	=	ABXW

SUM –OF –PRODUCT FORM(SOP):

Product of two or more variables or their complements is AND function of those variables Product of two variable can be AB, for three variable ABC, so on Sum/in Boolean algebra is same as OR function SOP expression is two or more AND fuctions OR ed together For example AB + CD is SOP expression AB+ BCD ABC + DEFABC+DEFG+AEF SOP can also contain a term with single variable A+ BCD+ACD

SUM –OF –PRODUCT FORM(SOP):

Implement SOP expression using logic gates

PRODUCT OF SUMS FORM (POS):

POS expression is AND of two or more OR functions For example (A + B). (C + D) is POS expression (A+B). (B + C+ D) $(\overline{A}+B+C)$. $(D+\overline{E}+F)$ SOP can also contain a term with single variable $A(B+\overline{C}+\overline{D}).(A+C+D)$

Implementation of POS Expressions

- Product-of-Sums expressions can be implemented using:
 - 2-level OR-AND logic circuits
 - 2-level NOR logic circuits
- OR-AND logic circuit

Karnaugh mapping (K-map) is another method for reduction in logical function. Tool to perform systematic reduction of complex logical circuit into simplified equivalent circuits.

Used to simplify equations having two, three, four, five, six different input variables

Two variable map will require $2^2 = 4$ cells, a three variable map require $2^3 = 8$ cells, 4 variable $2^4 = 16$ cells (For N variables 2^N cells required)

Plotting a Boolean Expressions: SOP form of expression can be plotted on K map by placing 1 in each cell corresponding to term of SOP

For example $\overline{A} \ \overline{B} + A \overline{B}$

For three variables $\overline{A} B \overline{C} + A \overline{B} C + A \overline{B} \overline{C} + A B C$

Plotting a Boolean Expressions: SOP form of expression can be plotted on K map by placing 1 in each cell corresponding to term of SOP For example $\overline{A} \ \overline{B} + A \overline{B}$

For Four variables $\overline{A} B \overline{C} D + \overline{A} B \overline{C} \overline{D} + \overline{A} \overline{B} \overline{C} \overline{D} + A B C D$

Grouping cells for simplification: Group 1 s that are adjacent as per following rules

- 1 Adjacent cells are cells differ by only a single variable for exam(A B C D and A B C \overline{D} are adjacent)
- 2 The 1 s in adjacent cells must be combined in groups of 1, 2, 4, 8, 16 and so on
- 3 Each group of 1 s should be maximized to include largest number of adjacent cells
- 4 Every 1 on map must be included in at least one group
- 5 There can be overlapping groups if they include noncommon 1 s

Grouping cells for simplification:

Grouping cells for simplification:

K-MAP (KARNAUGH MAPPING): Simplifying the expression:

When all 1 s are grouped, the mapped expression is ready for simplification

- 1 Each group of 1 s creates a product term composed of all variables that appears in only one form (uncomplemented or complemented) within the group
- 2 Variables that appear uncomplemented and complemented are eliminated
- 3 The final simplified expression is formed by summing the product terms of all the groups

```
Out = \overline{ABCD} + \overline{ABCD}
```


 $Out = \overline{B}$

K-MAP (KARNAUGH MAPPING): Simplifying the expression:

Out= AB + CD

 $Out = \overline{AB}CD + \overline{A}BCD + ABCD + A\overline{B}CD + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}\overline{D} + A\overline{B}\overline{C}\overline{D}$

K-MAP (KARNAUGH MAPPING):

Simplifying the expression:

 $\mathsf{Out} = \overline{\mathsf{A}}\overline{\mathsf{B}}\overline{\mathsf{C}}\overline{\mathsf{D}} + \overline{\mathsf{A}}\overline{\mathsf{B}}\mathsf{C}\overline{\mathsf{D}} + \mathsf{A}\overline{\mathsf{B}}\overline{\mathsf{C}}\overline{\mathsf{D}} + \mathsf{A}\mathsf{B}\mathsf{C}\mathsf{D}$

Using K map simplify the following expressions

 $A B C + A \overline{B} C + A \overline{B} \overline{C}$

HALF ADDER:

- Half adder adds two bit binary and produces sum and carry
- Two input (A and B) and two outputs (S=(SUM) and C=CARRY)to half adder

Inp	uts	Out	puts
Α	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

From truth table, Sum bit is a 1 only when input variables are not equal. The sum can be expressed as exclusive OR of the input variable The output C is a 1 only when both A and B inputs are 1 Carry is expressed as AND of the input variables

HALF ADDER:

Logical expression:
S = A B + AB = A ⊕ B
C=A.B

HALF ADDER:

Half adder adds two bit binary and produces sum and carry

FULL ADDER:

- Half adder adds three bit binary and produces sum and carry
- Three input (A and B and Carry in) and two outputs (S=(SUM) and C=CARRY out)to full adder

Input		Output		
A	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	.0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

FULL ADDER:

 $SUM = \overline{ABC_{in}} + \overline{ABC_{in}} + \overline{ABC_{in}} + \overline{ABC_{in}} + \overline{ABC_{in}}$ = $C_{in} (\overline{A} \overline{B} + AB) + \overline{C}_{in} (A\overline{B} + \overline{A}B)$ $= C_{in} \left[(\overline{A} + B) \cdot (A + \overline{B}) \right] + \overline{C}_{in} (A \overline{B} + \overline{A} B)$ = $C_{in} (\overline{AB} \cdot \overline{\overline{AB}}) + \overline{C}_{in} (A\overline{B} + \overline{AB})$ = $C_{in} (\overline{AB} + \overline{AB}) + \overline{C}_{in} (AB + \overline{AB})$ $= C_{in} \oplus (A \overline{B} + \overline{A} B)$ = $C_{in} \oplus (A \oplus B)$

Input			Output	
A	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Carry = $AB + AC_{in} + BC_{in}$

= $AB+AC_{in}(B+\overline{B})+BC_{in}(A+\overline{A})$

$$= AB + ABC_{in} + A\overline{B}C_{in} + ABC_{in} + \overline{A}BC_{in}$$

$$= AB(1+C_{in}+C_{in})+A\overline{B}C_{in}+\overline{A}BC_{in}$$

A + A = A

1+A=1

 $= AB + C_{in}(A\bar{B} + \bar{A}B)$

= $AB + A\overline{B}C_{in} + \overline{A}BC_{in}$

= $AB+C_{in}(A\oplus B)$

SELF STUDY:

Simplify the expressions using K map 1) $X = \overline{A}B\overline{C}D + A\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + AB\overline{C}D + AB\overline{C}\overline{D} + ABCD$ 2) $X = B\overline{C}\overline{D} + \overline{A}B\overline{C}D + AB\overline{C}D + \overline{A}BCD + ABCD + ABCD$

SOLUTION:

Simplify the expressions using K map 1) $X = \overline{A}B\overline{C}D + A\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + AB\overline{C}D + AB\overline{C}\overline{D} + ABCD$

SOLUTION:

Simplify the expressions using K map $X = B\overline{C}\overline{D} + \overline{A}B\overline{C}D + AB\overline{C}D + \overline{A}BCD + ABCD + ABCD$ $X = (A + \overline{A}).B\overline{C}\overline{D} + \overline{A}B\overline{C}D + AB\overline{C}D + \overline{A}BCD + ABCD + ABCD$ $X = AB\overline{C}\overline{D} + \overline{A}B\overline{C}\overline{D} + \overline{A}B\overline{C}D + AB\overline{C}D + ABCD + ABCD + ABCD$

 $X = B\overline{C} + BD$