

UNIT :I NUMBER SYSTEM

• BY

BHANUDAS NARWADE

- ASST. PROF.
- DEGLOOR COLLEGE, DEGLOOR

- 1. **Decimal Number System:**
- Appreciated by Laplace
- **•** Follows natural symbols 0,1,2,3,4,.....8,9 with position
- **Base or Radix is number of different digits**
- **Decimal number system has 10 different digits**
- Base or Radix is 10
- Higher numbers are written with weight of digits or place value of digit

- 1. Decimal Number System:Weight of digits
- Weight - 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{1} 10^{2} 10^{3} 10^{4} Weight value $\frac{1}{10^{4}}$ $\frac{1}{10^{3}}$ $\frac{1}{10^{2}}$ $\frac{1}{10^{1}}$ Decimal point1 10^{1} 10^{2} 10^{3} 10^{4}
 - 0.0001 0.001 0.01 0.1 . 1 10 100 1000 10000

- 1. **Decimal Number System:**
- Find the value of digit in following decimal Number
 8632
- Number-8 3 2 6 **10³ 10**² **10¹** 10^{0} Weight – 10 1000 100 1 • Weight value 8×1000 $6 \times 100 \qquad 3 \times 10.2 \times 1$ 8000 + 600 30 2 + += 8632

- 1. **Decimal Number System:**
- Find the value of digit 4 in following decimal Number
 9428
- Number-9 8 4 2 **10³ 10² 10¹ 10**⁰ • Weight – • Weight value 10 1000 100 1 Weight of digit 4 is 100

9's Complement:

• The 9's complement of number is obtained by subtracting the given decimal number from digit 9

Digit N	0	1	2	3	4	5	6	7	8	9
9's Compleme nt (9-N)	9	8	7	6	5	4	3	2	1	0

- 9's Complement Subtraction:
- Rules:
- 1) Keep minuend number as it is
- 2) 9's compliments of subtrahend number
- 3) Add two numbers
- 4) Is carry? Yes-answer is positive add end round carry(ERC)No- Answer is negative and in 9's complement form

9's Complement Subtraction:

Example:

4

13

+1

 $7 \longrightarrow 7$ -3 $\longrightarrow +6$ 9's complement 4 4
-7 + 2 9's complement
-3 6 ans is -ve and in 9's complement form
9's completement of 6 is 3

9's Complement Subtraction:

Example:

08 *107*

- + 1

08

10's Complement: The 10's complement of number is obtained by adding 1 in 9's complement

Digit N	0	1	2	3	4	5	6	7	8	9
9's Complement	9	8	7	6	5	4	3	2	1	0
10'complement 9's comp+1	10	9	8	7	6	5	4	3	2	1

- **10's Complement Subtraction:**
- **Rules:**
- 1) Keep minuend number as it is
- 2) 10's compliments of subtrahend number
- 3) Add two numbers
- 4) Is carry? Yes -answer is positive discard end round carry(ERC)
 - **No** Answer is negative and in 10's complement form

4

10's Complement Subtraction:

Example:

 $7 \longrightarrow 7$ -3 $\longrightarrow +7$ 10's complement

4 1 4 discard carry

-3 7 ans is -ve and in
10's complement form
10's completement of 7 is 3

-7 + 3 10's complement

BINARY NUMBER SYSTEM:

- 2. **Binary Number System:**
- Number system with base two called binary number system
- It uses only two digits 0 and 1
- In digital electronics voltage level +5v =1 and 0v =0
- Sometimes 1 as HIGH and 0 as LOW
- Binary digits are called BIT
- Group of 4 bits is Nibble, 8 bit= Byte
- Position of 1 or 0 indicates its weight and increasing with power of 2

BINARY NUMBER SYSTEM:

1. **Binary Number System:**

- Weight 2^{-4} 2^{-3} 2^{-2} 2^{-1} .
 2^0 2^1 2^2 2^3 2^4 2^5 2^6

 Weight value
 $\frac{1}{2^4}$ $\frac{1}{2^3}$ $\frac{1}{2^1}$ $\frac{1}{2^1}$ 1 2 4 8 16 32 64
 - 0.0625 0.125 0.25 0.5 . 1 2 4 8 16 32 64

BINARY NUMBER SYSTEM:

1. **Binary Number System:**

Decimal	0	1	2	3	4	5	6	7	8
Binary	0000	0001	0010	0011	0100	0101	0110	0111	1000

Decimal	9	10	11	12	13	14	15	16	17
Binary	1001	1010	1011	1100	1101	1110	1111	10000	10001

Binary Addition:

• Performed in same manner as decimal

Α	В	SUM	CARRY
0	0	0+0=0	0
0	1	0+1=1	0
1	0	1+0=1	0
1	1	1+1=0	1

In last case when binary 1 is added with 1 yields binary (10) i.e. sum=0 and carry=1 since 1 is largest digit in binary system

Three Bit Binary Addition:

Α	В	С	SUM	CARRY
0	0	0	0+0+0=0	Ο
0	0	1	0+0+1=1	0
0	1	0	0+1+0=1	0
0	1	1	0+1+1=0	1
1	0	0	1+0+0=1	Ο
1	0	1	1+0+1=0	1
1	1	0	1+1+0=0	1
1	1	1	1+1+1=1	1

Ex 1)	amples: 5 0101 +2 +0010 7 0111	$ \begin{array}{cccc} ^{0\ 1\ 1\ 1} & & 7 \\ 001111 & & 7 \\ 10101 & & 21 \\ 11100 & = 28 \\ \end{array} $
	$+ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(85)_{10} + (181)_{10} + 10110101 + 100001010 + 1000001010 + 1000001010 + 1000001010 + 1000001010 + 1000001010 + 1000001010 + 1000001010 + 1000001010 + 1000001010 + 1000001010 + 100000100000000$

Binary Subtraction:

Subtraction is inverse operation of addition

Α	В	DIFF	BORROW
0	0	0-0=0	0
0	1	0-1=1	1
1	0	1-0=1	0
1	1	1-1=0	0

When 1 is subtracted from 0, the reminder is 1 with borrow 1 from next column to the left

Three Bit Binary Subtraction:

Α	В	С	DIFF	BORROW
0	0	0	0-0-0=0	0
0	0	1	0-0-1=1	1
0	1	0	0-1-0=1	1
0	1	1	0-1-1=0	1
1	0	0	1-0-0=1	0
1	0	1	1-0-1=0	0
1	1	0	1-1-0=0	0
1	1	1	1-1-1=1	1

BINARY ARITHMATICS (SUBTRACTION:

Examples: 1) 5 0101 -2 - 0010 3 0011

4 5	1 0 1 1 0 1
-39	- 100111
	0 011 · - borrow
06	$(0 \ 0 \ 0 \ 1 \ 1 \ 0)$

Binary Multiplication:

Α	В	MULTIPLCATION
0	0	0×0=0
0	1	0×1=0
1	0	1×0=0
1	1	1×1=1

BINARY ARITHMATICS (MULTIPLCATION:

v 100		1001	1100×11	1011.01
011		x 101	1100	x 110.1
		1001	×11	101101
100		0000	1100	10110100
100 +	+	1001	1100 imes	$\frac{101101000}{1001001}$
1100		101101	$\overline{10100}$	1001001.001

Binary Division:

• Division follows same pattern in binary as in decimal

- Examples:
- $25 \div 5 = 5$

101 Quotient 101 11001 - 101 - 00101 - 101

000

Reminder

Binary Division:

• Division follows same pattern in binary as in decimal

- Examples:
- $\cdot 12 \div 2 = 6$

000

Reminder

1'S AND 2'S COMPLEMENT:

- 1's complement of a given binary number is obtained by replacing 1 instead of 0 and 0 instead of 1
- Find out 1's complement of binary number
- 101101 1's complement is 010010
- 111001 1's complement is 000110
- 01010110 1's complement is 10101001
- 2's complement of a given binary number is obtained by adding1 to 1's completement
- Find out 2's complement of binary number
- 101101
 1's complement is 010010
 2's complement is 010010+1=010011
- 1110011's complement is 0001102's complement is 000110+1=000111
- 01010110 1's complement is 10101001 2's comp.. is 10101001+1=10101010

Binary subtraction using 1's complement Rules

- 1. Keep minuend number as it is
- 2. Make 1's complement of negative number or number to be subtracted
- 3. Add these two numbers
- 4. Is carry ? Yes answer is positive , add end round carry
- 5. No Answer is negative and in 1's complement form

Example:			
	binary	subtract	tion using 1,s completement
12	1100	1100	keep minuend number as it is
- 07	- 0111	+ 1000	make 1's complement of subtrahend no.
05	0101	1 0100	Add end round carry
		+ 1	
		0101	

Example	•		
	binary	subtracti	on using 1's completement
14	1110	1110	keep minuend number as it is
- 11	- 1011	+ 0100	make 1's complement of subtrahend no.
	·		
03	0011	1 0010	Add end round carry
		+ 1	
		0011	

Example:

	binary
25	11001
- 30	- 11110
-05	-00101

subtraction using 1's completement11001keep minuend number as it is+00001make 1's complement of subtrahend no.

11010 No end round carry answer is negative and in 1's complement form

-00101 = -5 in Decimal

-12

BINARY SUBTRACTION 1'S AND 2'S COMPLEMENT:

Examples for practice: subtraction using 1's completement 1) 17 2) 53 3) 48 - 08 -44 -60 -----09 09 -12

If both numbers are negative then make 1's complement of both no. and add that ,if carry add that carry and answer is in 1's complement form

- $-5 \longrightarrow 0101$ 1's complement 1010
- $-7 \longrightarrow 0111$ 1's complement+1000

10010 + 1 = 0011 1's comp. -1100

Binary subtraction using 2's complement Rules

- 1. Keep minuend number as it is
- Make 1's complement of negative number or number to be subtracted add 1 to 1's complement to make 2's complement
- 3. Add these two numbers
- 4. Is carry ? Yes answer is positive , discard end round carry
- 5. No Answer is negative and in 2's complement form

Example	•		
	binary	subtrac	tion using 1,s completement
12	1100	1100	keep minuend number as it is
- 07	- 0111	+ 1001	make 2's complement of subtrahend no.
05	0101	1 010 1	discard end round carry
		0101	

Example			
	binary	subtrac	tion using 1's completement
14	1110	1110	keep minuend number as it is
- 11	- 1011	+ 0101	make 2's complement of subtrahend no.
03	0011	1 0011	discard end round carry
		0011	

Example:

	binary
25	11001
- 30	- 11110
-05	-00101

subtraction using 1's completement11001keep minuend number as it is+00010make 2's complement of subtrahend no.

11011 No end round carry answer is negative and in 2's complement form

00100 +1

0101 = -5

OCTAL NUMBER SYSTEM

- 3) Octal number system:
- Base or radix : 8
- Digits: 0-7
- 3. Octal Number System: Weight of digits

Weight -
$$8^{-2}$$
 8^{-1} .Weight value $\frac{1}{8^2}$ $\frac{1}{8^1}$ Octal point0.015620.125.

 80
 81
 82
 83
 84

 1
 81
 82
 83
 84

 1
 81
 82
 83
 84

 1
 8
 64
 512
 4096

OCTAL NUMBER SYSTEM

DECIMAL	BINARY	OCTAL	DECIMAL	BINARY	OCTAL	DECIMAL	BINARY	OCTAL
Ο	0000	0	9	1001	11	18	10010	22
1	0001	1	10	1010	12	19	10011	23
2	0010	2	11	1011	13	20	10100	24
3	0011	3	12	1100	14	21	10101	25
4	0100	4	13	1101	15	22	10110	26
5	0101	5	14	1110	16	23	10111	27
6	0110	6	15	1111	17	24	11000	30
7	0111	7	16	10000	20	25	11001	31
8	1000	10	17	10001	21	26	11010	32

Evomplo

OCTAL ADDITION AND SUBTRACTION:

L'Aal	iipic.							
1)	$(7)_{8}$	2) $(17)_8$	3)	$(15)_{8}$	4)	(42) ₈	5) (43)8
+	(4) ₈	$+(25)_{8}$		- (06) ₈		- (16) ₈	+(55) ₈
	(13) ₈	(44) ₈		(07) ₈		(24) ₈	(12	20) ₈
6)	$(12)_8$ (71)	7) $(35)_8$ + $(27)_8$	8)	$(24)_8$	9)	$(20)_8$	10) (.	37) ₈ 76) ₈
·	(71)8			(17)8		(15)8		
	(103) ₈	(64) ₈		(05) ₈		(03) ₈	(13	(5) ₈

HEXADECIMAL NUMBER SYSTEM

- 4) Hexadecimal number system:
- Base or radix : 16
- Digits: 0-9 and character A,B,C,D,E,F
- 3. Hexadecimal Number System: Weight of digits

Weight -
$$16^{-2}$$
 16^{-1} . 16^{0} 16^{1} 16^{2} 16^{3} Weight value $\frac{1}{16^{2}}$ $\frac{1}{16^{1}}$ $_{\text{Hexadecimal point}}$ 1 16^{1} 16^{2} 16^{3} 0.00390.0625.1162564096

HEXADECIMAL NUMBER SYSTEM

DECIM AL	BINARY	OCTAL	HEXADE CIMAL	DECIM AL	BINARY	OCTAL	HEXAD ECIMAL	DECIMA L	BINARY	OCT AL	Hexadec imal
0	0000	0	0	9	1001	11	9	18	10010	22	12
1	0001	1	1	10	1010	12	А	19	10011	23	13
2	0010	2	2	11	1011	13	В	20	10100	24	14
3	0011	3	3	12	1100	14	С	21	10101	25	15
4	0100	4	4	13	1101	15	D	22	10110	26	16
5	0101	5	5	14	1110	16	Е	23	10111	27	17
6	0110	6	6	15	1111	17	F	24	11000	30	18
7	0111	7	7	16	10000	20	10	25	11001	31	19
8	1000	10	8	17	10001	21	11	26	11010	22	1A

HEXADECIMAL NUMBER SYSTEM

DECIM AL	BINARY	OCTA L	HEXA DECIM AL
27	11011	33	ıВ
28	11100	34	ıC
29	11101	35	ıD
30	11110	36	ıЕ
31	11111	37	ıF
32	100000	40	20
33	100001	41	21
34	100010	42	22

HEXADECIMAL ADDITION AND SUBTRACTION:

Ex	am	ple:							
1)		$(07)_{16}$	2) (A7) ₁₆	3)	(1E) ₁₆	4)	(B9) ₁₆	5)	(63) ₁₆
	+	$(17)_{16}$	$+ (25)_{16}$		$+ (06)_{16}$		$+(C8)_{16}$		$+(55)_{16}$
-		(1E)		-	(24)		(181)	-	(R 8)
		$(1L)_{16}$	$(\mathbf{CC})_{16}$		(24) ₁₆		$(101)_{16}$		(D0) ₁₆
6)		$(A2)_{16}$	7) (65) ₁₆	8)	$(24)_{16}$	9)	$(2F)_{16}$	10)	$(A7)_{16}$
	_	$(71)_{16}$	$-(27)_{16}$		$-(19)_{16}$		$-(15)_{16}$		$-(7D)_{16}$
		(31) ₁₆	(3D) ₁₆		$(0B)_{16}$		(1A) ₁₆		(2A) ₁₆

- Decimal to Binary
- There are two methods
- 1) SUM OF WEIGHT METHOD
- 2) DOUBLE DOUBLE METHOD
- SUM OF WEIGHT METHOD:
- In this method ,a given decimal number is to determine the set of binary weight values whose sum is equal to decimal number
- Example
- $(9)_{10} = 8 + 1 = 8 + 0 + 0 + 1$
 - $= 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$
 - = 8+0+0+1
- $(9)_{10} = (1001)_2$


```
Decimal to Binary
Example
2) (25)_{10} = 16 + 8 + 1 = 16 + 8 + 0 + 0 + 1
        =1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}
         = 16+8+0+0+1
(25)_{10} = (11001)_2
3) (58)_{10} = 32 + 16 + 8 + 2 = 32 + 16 + 8 + 0 + 2 + 0
             =1 \times 2^{5} + 1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}
              = 32 + 16 + 8 + 0 + 2 + 0
(58)_{10} = (111010)_2
```


Decimal to Binary Example 4) $(0.625)_{10} = 0.5 + 0.125 = 0.5 + 0.125$ $= 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3}$ = 0.5 + 0 + 0.125 $(0.625)_{10} = (0.1010)_2$

5) $(0.375)_{10} = 0.25 + 0.125 =$ =1 ×2⁻²+ 1 × 2⁻³ = 0.25+0.125 (58)₁₀ = (0.0110)₂

- Double –Double Method:
- More popular and convenient
- Decimal number is repeatedly divided by the base of binary (2) and reminder of these division are to form binary number.
- The reminder of first division as LSB an last division as MSB of binary Example
- $(9)_{10} = (?)_2$
- 9/2 = 4 with reminder of 1 (LSB)
- 4/2 = 2 with reminder of 0
- 2/2 = 1 with reminder of 0
- 1/2 = 0 with reminder of 1(MSB)
- $(9)_{10} = (1001)_2$

- Double –Double Method:
- Example
- $(29)_{10} = (?)_2$
- 29/2 = 14 with reminder of 1 (LSB)
- 14/2 = 7 with reminder of 0
- 7/2 = 3 with reminder of 1
- 3/2 = 1 with reminder of 1
- 1/2 = 0 with reminder of 1(MSB)
- $(29)_{10} = (11101)_2$

- Double –Double Method:
- Example
- $(23)_{10} = (?)_2$
- 23/2 = 11 with reminder of 1 (LSB)
- 11/2 = 5 with reminder of 1
- 5/2 = 2 with reminder of 1
- 2/2 = 1 with reminder of 0
- 1/2 = 0 with reminder of 1(MSB)
- $(23)_{10} = (10111)_2$

- Fractional Decimal to Fractional binary conversion:
- In this case successively multiply by base (2). When carry occurs tabulate it separately but do not use in next multiplication
- Continue multiplying the fractional part reminder zero
- First carry generated is MSB and last carry is LSB
- Example 1
- $(0.625)_{10} = (?)_2$
- $0.625 \times 2 = 1.250$
- $0.250 \times 2 = 0.500 =$ with carry 0
- $0.500 \times 2 = 1.000$
- $(0.625)_{10} = (0.101)_2$

- with carry 1 (MSB)
- with carry 1(LSB)

Fraction decimal to fraction binary:

Example 2

- $(0.3)_{10} = (?)_2$
- $0.300 \times 2 = 0.600$
- $0.600 \times 2 = 1.200$
- $0.200 \times 2 = 0.400$
- $0.400 \times 2 = 0.800$
- $0.800 \times 2 = 1.600$
- $0.600 \times 2 = 1.200$
- $(0.3)_{10} = (0.010011)_2$

- with carry 0 (MSB)
- with carry 1
- with carry 0
- with carry 0
- With carry 1
- With carry 1(LSB)

CONVERSION: 2) BINARY TO DECIMAL:

- Binary to Decimal:
- Sum of weight Method
- Digit position of binary number following decimal weights

2 ⁵	24	2 ³	2^{2}	21	20
32	16	8	4	2	1

- For conversion
- When 1 in digit position add weight of position When 0 in digit position discard weight of position Example 1
- $(1011)_{2} = (?)_{10}$ (1011)_{2} = 1 × 2³ + 0 × 2² + 1 × 2¹ + 1 × 2⁰
 - = $1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1 = 8 + 0 + 2 + 1 = (11)_{10}$

- Double –Double Method:
- More popular and convenient
- Decimal number is repeatedly divided by the base of octal (8) and reminder of these division are to form octal number.
- The reminder of first division as LSB an last division as MSB of octal Example

$$(654)_{10} = (?)_8$$

- 654/8 = 81 with reminder of 6 (LSB)
- 81/8 = 10 with reminder of 1
- 10/8 = 1 with reminder of 2
- 1/8 = 0 with reminder of 1(MSB)
- $(654)_{10} = (1216)_8$

- Double –Double Method:
- Example
- $(583)_{10} = (?)_8$
- 583/8 = 72 with reminder of 7 (LSB)
- 72/8 = 9 with reminder of 0
- 9/8 = 1 with reminder of 1
- 1/8 = 0 with reminder of 1(MSB)
- $(583)_{10} = (1107)_8$

- Double –Double Method:
- Example
- $(27.125)_{10} = (?)_8$ 27/8 = 3 with reminder of 3 (LSB) 3/8 = 0 with reminder of 3(MSB) $0.125 \times 8 = 1.00$ with carry 1(MSB) $(27.125)_{10} = (33.1)_8$

- Double –Double Method:
- Example
- $(342.44)_{10} = (?)_8$
- 342/8 = 42 with reminder of 6 (LSB)
- 42/8 = 5 with reminder of 2
- 5/8 = 0 with reminder 5 (MSB)
- $0.44 \times 8 = 3.52$ with carry 3(MSB)
- $0.52 \times 8 = 4.16$ with carry 4
- $0.16 \times 8 = 1.28$ with carry 1(LSB)
- $(342.44)_{10} = (526.341)_8$

Perform the following conversion:

$$(0.875)_{10} = (?)_8$$

$$(94)_{10} = (?)_8$$

$$(855.24)_{10} = (?)_8$$

$$(49)_{10} = (?)_8$$

$$(108.92)_{10} = (?)_8$$

$$(497.85)_{10} = (?)_8$$

CONVERSION: 4) BINARY TO OCTAL:

Binary to octal conversion

Rules:

- Group the bits in "three" starting from binary point 1
- For grouping the bits in three, move towards left from binary point for whole 2 integral part
- 3 For fractional part move towards right
- In the case if only one or two bits are left add zero to complete group 4
- Replace each group of three bits by equivalent octal number 5

Example

- $(100110)_{2}$
- $=(?)_{8}$ 1 0 0 1 1 0 $= (46)_8$

CONVERSION: 4) BINARY TO OCTAL:

Example $(1101.10)_2 = (?)_8$ $1 101 \cdot 10$ $0 0 1 1 0 1 \cdot 100 = (15.4)8$

 $(11100.1101)_2 = (?)_8$ 11100.1101

 $\underline{001100} . 110100 = (14.64)$

CONVERSION: 5) OCTAL TO BINARY:

- Reverse of binary to octal
- One octal digit is converted into its three bit binary equivalent Example 2
- $(57)_8 = (?)_2$ 5 7
- 101 111
 - $(57)_8 = (101111)_2$
- (3) $(0.42)_8 = (?)_2$ 4 2
 - 100 010
 - $(0.42)_8 = (0.100010)_2$

CONVERSION: 6) OCTAL TO DECIMAL:

- In octal each digit corresponds to power of 8 Multiply each octal by its weight and add the resultant product Example
- $(654)_8 = (?)_{10}$
- $654 = 6 \times 8^2 + 5 \times 8^1 + 4 \times 8^0$
 - $= 6 \times 64 + 5 \times 8 + 4 \times 1$
 - = 384+40+4 = 428
- $(654)_8 = (428)_{10}$

CONVERSION: 7) DECIMAL TO HEXADECIMAL :

- Double –Double Method:
- More popular and convenient
- Decimal number is repeatedly divided by the base of hexadecimal (16) and reminder of these division are to form hexadecimal number.
- The reminder of first division as LSB an last division as MSB of hexadecimal Example
- $(654)_{10} = (?)_{16}$
- 654/16 = 40 with reminder of 14 i.e.(E) (LSB)
- 40/16 = 2 with reminder of 8
- 2/16 = 0 with reminder of 2 (MSB)
- $(654)_{10} = (28E)_{16}$

CONVERSION: 7) DECIMAL TO HEXADECIMAL:

- Double –Double Method:
- Example 2
- $(498)_{10} = (?)_{16}$
- 498/16 = 31 with reminder of 2 (LSB)
- 31/16 = 1 with reminder of 15 i.e.(F)
- 1/16 = 0 with reminder of 1(MSB)
- $(498)_{10} = (1F2)_{16}$
- Example 3
- $(98)_{10} = (?)_{16}$
- 98/16 = 6 with reminder of 2 (LSB)
- 6/16 = 0 with reminder of 6 (MSB)
- $(98)_{10} = (62)_{16}$

CONVERSION: 7) DECIMAL TO HEXADECIMAL:

- Double –Double Method:
- Example 4
- $(0.635)_{10} = (?)_{16}$
- $0.635 \times 16 = 10.160$ with carry of 10 i.e. A (MSB)
- $0.160 \times 16 = 2.56$ with carry of 2
- $0.56 \times 16 = 8.96$ with carry of 8 (LSB)
- $(0.635)_{10} = (0.A28)_{16}$
- Example 5
- $(151)_{10} = (?)_{16}$
- 151/16 = 9 with reminder of 7 (LSB)
- 9/16 = 0 with reminder of 9 (MSB)
- $(151)_{10} = (97)_{16}$

CONVERSION: 8) HEXADECIMAL TO DECIMAL:

In hexadecimal each digit corresponds to power of 16 Multiply each hexadecimal by its weight and add the resultant product Example

- $(FC8)_{16} = (?)_{10}$
- FC8 = $F \times 16^2 + C \times 16^1 + 8 \times 16^0$
 - $= 15 \times 256 + 12 \times 16 + 8 \times 10^{-1}$
 - = 3840+192+8 =4040
- $(FC8)_{16} = (4040)_{10}$

CONVERSION: 8) HEXADECIMAL TO DECIMAL:

- Example 2
- $(0.B2)_{16} = (?)_{10}$
 - $0.B2 = B \times 16^{-1} + 2 \times 16^{-2}$
 - $= 11 \times 1/16 + 2 \times 1/256$
 - = 0.6875 + 0.00781 = 0.69531
- $(0.B2)_{16} = (0.69531)_{10}$
- (4C.C2) =(?)10
- 4C. C2 = $4 \times 16^{1} + 12 \times 16^{0} + 12 \times 1/16 + 2 \times 1/256$
 - $= 4 \times 16^{1} + 12 \times 16^{0} + 12 \times 1/16 + 2$ = 64+12+0.75+0.0078
- (4C.C2) = (76.7578)10

CONVERSION: 9) BINARY TO HEXADECIMAL:

Binary to hexadecimal conversion

Rules:

- 1 Group the bits in "four" starting from binary point
- 2 For grouping the bits in four, move towards left from binary point for whole integral part
- 3 For fractional part move towards right
- 4 In the case if only one, two or three bits are left add zero to complete group
- 5 Replace each group of four bits by equivalent hexadecimal number

Example

 $(11100110)_{2} = (?)_{16}$ $\underline{1110} \ \underline{0110} = (E6)_{16}$

CONVERSION: 9) BINARY TO HEXADECIMAL:

Example2	
$(110111101)_2$	=(?) ₁₆
<u>0001 1011 1101</u>	= (1BD)
$(110111101)_2$	=(1BD) ₁₆
Example 3	
$(0.11011)_2$	=(?) ₁₆
1 <u>101</u> <u>1</u>	
<u>1101</u> <u>1000</u>	= D 8
$(0.11011)_2$	$=(0.D8)_{16}$

- Reverse of binary to hexadecimal
- One hexadecimal digit is converted into its four bit binary equivalent Example
- $(C7)_{16} = (?)_{2}$ C
 7
 110
 0
 0
 1
 1
 (C7)_{16} = (11000111)_{2}

BINARY CODES:

Binary codes are divided into two categories
1 Weighted binary codes
2 Non weighted binary codes
BCD CODES :
Weighted binary codes
Each digit in code have specific weight
Also called 8421 code

BINARY CODES: BCD CODES:

DECIMA	BCD	
L		Any decimal can be represented in DCD codes as
0	0000	Decimal 521 can be represented in BCD codes as
1	0001	5 2 1
2	0010	
3	0011	0101 0010 0001
4	0100	$(521)_{10} = (010100100001)_{8421}$
5	0101	Convert following decimal into BCD codes
6	0110	$(8)_{10} \qquad (12)_{10} \qquad (4.5)_{10} \qquad (42.63)_{10}$
7	0111	
8	1000	
9	1001	

GRAY CODE:

- Gray code is non weighted code
- Not suitable for arithmetic operation
- Useful for input/output devices and Analog to digital convertors
- Decimal no. is represented in binary formatand only one bit will change in each time
- Conversion of Binary number to gray code:
- Keep MSB of binary number as it is
- Add this bit to next position
- Sum bit is as gray code
- If carry ,discard it
- Continue still last bit

GRAY CODE:

Conversion of Binary number to gray code: convert 1011 into gray code Binary $1 \quad 0 \quad 1 \quad 1$ Gray code $1 \quad 1 \quad 1 \quad 0$ $(1010)_{binary} = (1110)_{gray}$

Conversion of Binary number to gray code: convert 11011 into gray code Binary 1 1 0 1 1

Gray code 1 0 1 1 0 (11011)_{binary} = $(10110)_{gray}$

Conversion of Binary number to gray code: convert 11011 into gray code convert the following binary no. into gray code

- 1 (11111)
- 2 (101010)
- 3 (1100)
- 4 (0111)
- 5 (1110)

Conversion of gray code to Binary number : Keep MSB of gray as it is Add this MSB bit diagonally to bit nearest Ignore carry Continue till LSB Example Convert (1100)gray to binary

Gray 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0

(1100)Gray=(1000)binary

Conversion of gray code to Binary number : Convert (10101)gray to binary

 Gray
 1
 0
 1
 0
 1

 $\| \checkmark \| \checkmark \| \checkmark \| \checkmark \| \checkmark \|$ Binary
 1
 1
 0
 0
 1

 Binary
 1
 1
 0
 0
 1

 (1111)_{Gray}= (?)_{binary}

 $(1101)_{\text{Gray}} = (?)_{\text{binary}}$

EXCESS-3 CODE:

- Non weighted code
- Also known as XS-3 and used to express decimal number
- To get decimal number into exess -3 form, add 3 to each decimal digit before converting to binary
- XS-3is 3 more than 8421 code

Decimal to ex-3 code

To encode decimal number to ex-3 code, add three to each decimal digit In this case if carry then don't carry to next higher place Convert each bot into 4 bit binary euivalent

Example

 $(2)_{10} = 2 + 3 = 5 = (0101)_{EX-3}$

EXCESS-3 CODE:

Example

 $(9)_{10} = 9+3 = 12 = (1100)_{EX-3}$ (25)₁₀ = 2+3=5 and 5+3=8=(01011000)_{EX-3} (89)₁₀ = (1011 1100)_{EX-3} (79)₁₀ =(?)_{EX-3}