

QUANTUM THEORY OF LIGHT

B.Sc. T.Y.

Quantum theory of light

1887-Heinrich Heartz-Observed light changes the voltage at which the sparking takes place i.e. relation between light and electricity.

- **1900- Philipp Lenard:** Demonstrated the interaction between light and matter.
- Classical physics unable to explain Photoelectric effect
 - Photoelectric effect by classical physics
 - Light as em waves
 - Time delay
 - More intense light ,greater energies of electrons
 - The relations between frequency and electron energy

Quantum theory of light

- Purposed by Albert Einstain's 1905
- Realised- Energy in light wave not spread out over wave fronts but concentrated in small packet photon
- Each photon of frequency v has energy hv same as Planck

Energy was not only given to em waves in separate quanta but also carried by waves in separate quanta

Observations of Photoelectric effect – Einstains hypothesis

1). EM waves concentration in photons so no delay

2). Intensity changes, no. of photoelectrons not energy

WORK FUNCTION:

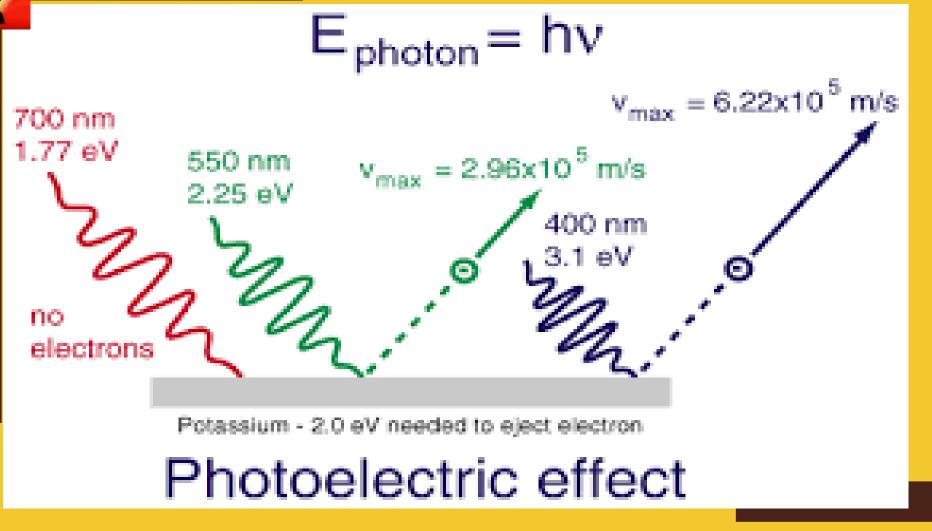
- Threshold Frequency(v_o):Minimum frequency below which no photoelectric effect
- Work function(φ) :Minimum energy φ for an electron to escape from particular metal surface is work function of metal
 - **Relations between (\phi) and (v_o)**
 - Work function $\phi = hv_o$
 - Greater work function-more energy needed to leave surface-higher the threshold frequency for photoelectric emission.

Photoelectric work functions:

Sr. No.	Metal	Symbol	Work function ,eV
1	Cesium	Cs	1.9
2	Potassium	K	2.2
3	Sodium	Na	2.3
4	Lithium	Li	2.5
5	Calcium	Са	3.2
6	Silver	Ag	4.7
7	Platinum	Pt	6.4

Photoelectric effect is phenomenon of visible and Ultraviolet region

Einstein's Photoelectric Equation


- According to Einstein, the photoelectric effect in a given metal should obey the equation
 - $hv = K E_{Max} + \phi$
 - *hv* is Photon energy
 - *K E_{Max}* is maximum photoelectron energy
 - ϕ is work function and $\phi = hv_o$
 - $hv = K E_{Max} + hv_o$ and
 - $K E_{Max} = hv hv_o = h(v v_o)$
- Photon energy in terms of electronvolts is

-
$$E = \left(\frac{6.626X10^{-34} J.s}{1.602X10^{-19} J/eV}\right) v = (4.136 \times 10^{-15}) v \text{ eV.s}$$

In terms of wavelength

-
$$E = \left(\frac{(4.136 \times 10^{-15} \text{eV.s})(3 \times 10^8 m/s)}{\lambda}\right) = (1.24 \times 10^{-6}) \text{eV.m}$$

