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The hydrogen atom is the simplest physical system containing 
interaction potentials (i.e., not just an isolated particle).

Simple:  one proton, one electron, and the electrostatic 
(Coulomb) potential that holds them together. 

The potential energy in this case is just
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(the attractive potential between charges of +e and –e, 
separated by a distance r).

This is a stationary state potential (no time dependence).  We 
could just plug it in to Schrödinger’s equation to get
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The potential looks quite simple,  but it is a function of r, not x 
or (xyz).  What can we do about that? 

( )2 2 2 2 2 2 2x  + y  + z  = r    ⇒   r =  x + y + z

( )
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The spherically symmetric potential “tells” us to 
use spherical polar coordinates!

http://hyperphysics.phy-astr.gsu.edu/hbase/sphc.html

http://hyperphysics.phy-astr.gsu.edu/hbase/sphc.html


In spherical polar coordinates, r is 
the length of the radius vector from 
the origin to a point (xyz)

( )2 2 2r =  x + y +z  ,

 is the angle between the radius 
vector and the +z axis
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and  is the angle between the projection of the radius vector 
onto the xy plane and the +x axis
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The equations on the previous slide tell us how to express 
(r) in terms of (xyz).  We can also express (xyz) in terms of 
(r):

( ) ( ) ( ) ( ) ( )x = r sin θ  cos , y = r sin θ  sin , z = r cos θ . 

Now we can re-write the 3D Schrödinger equation 
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In three dimensions, and in spherical polar coordinates, as 
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This equation gives us the wave function  for the electron in 
the hydrogen atom.  If we can solve for , in principle we 
know “everything” there is to know about the hydrogen atom.



Separation of Variables

A differential equation for each variable

Schordinger’s equation in spherical polar coordinates for 
hydrogen atom can be separated into three independent 
equations involving each single coordinate only

𝜓(𝑟, 𝜃, 𝜙) has a form of product of three different 
functions R(r) ,  ( ),  () 
Hydrogen Atom Wavefunction:

The function R(r) describes how the wave function 𝜓 of 
electron varies along radius vector from nucleus with 𝜃,
And 𝜙 constant

ψ(r, θ, φ) = R(r) Θ(θ) Φ(φ)



ψ = R Θ Φ

The function  ( ) describes how the wave function 
𝜓 of electron varies with  zenith angle 𝜃 along a 
meridian on a sphere centered  at the nucleus with r 
And 𝜙 constant
The function  () describes how the wave function 
𝜓 of electron varies with  azimuth angle 𝜙 along a 
parallel on a sphere centered  at the nucleus with r 
And  constant
Simply



Thus the partial derivatives in Schrödinger's equation become
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The partial derivatives become full derivatives because R, , 
and  depend on r, , and  only. 



Substituting  = R into Schrödinger's equation and divide 
by R.  The result is 
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Schrodinger’s equation for H atom
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Third term of above eq. is function of azimuth angle 
,Rearranging above equation

Differential eq. for function 𝜙 is
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Dividing above eq. by sin2  and rearranging

The equation for function Θ and R are 
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Equation for Φ

Equation for Θ

Equation for Φ
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