COMPTON EFFECT

FOR
 B.Sc.T.Y.

BY
 Bhanudas Narwade

COMPTON EFFECT

Scattering of photon by an electron

ARTHUR HOLLY COMPTON

 (1892-1962)Native : Ohio

Education:Wooster and Princeton
Research:Washington university
X-ray increases in wavelength when scattered

Conformation of particle nature of light
Studied cosmic rays

Nobel prize_in 1927

EXPERIMENTAL DEMONSTRATION
X-Ray of single wavelength is

directed at target

is Wavelength of scattered X-Rays
determined at various angle ϕ
Result shows the shift
in wavelength

COMPTON EFFECT

Scattering of photon by an electron

Suppose an X ray photon strikes on electron
Scattered photon changes its direction
Electron receives impulse begins to move

Before Collision

Energy associated with initial photon of frequency u.is

$$
E=\boldsymbol{h} \boldsymbol{v}
$$

After collision

Energy associated with scattered photon of frequency v^{\prime} is

$$
\boldsymbol{E}=\boldsymbol{h} \boldsymbol{v}^{\prime}
$$

COMPTON EFFECT

During collision

Photon looses energy
Electron receives that one
Loss in photon energy=Gain of KE of electron
$h v-h v^{\prime}=\mathrm{KE}$
Momentum of massless particle

Incident photon
(a) Target electron
 related to its energy by
$E=p c$
Photon momentum
$\mathrm{p}=\mathrm{E} / \mathrm{c}=h v / \mathrm{c}$

COMPTON EFFECT

Momentum is conserved in each two mutually perpendicular direction

Initial photon momentum $=h v / c$
Scattered photon momentum =hv'/c
Initial electron momentum=0
Final electron momentum $=p$
In original direction
Initial momentum=final momentum
$\frac{h v}{c}+0=\frac{h v^{\prime \prime}}{c} \cos \phi+p \cos \theta=(4)$
Perpendicular direction
Initial momentum=final momentum
$0=\frac{h v^{\prime \prime}}{c} \sin \phi+p \sin \theta$

COMPTON EFFECT

Multiplying eq.(4) and (5) by cand rewriting

$$
\begin{aligned}
& p c \cos \theta=h v-h v^{\prime} \cos \phi---(6) \\
& p c \sin \theta=h v^{\prime} \sin \phi-----(7)
\end{aligned}
$$

Squaring and adding eq. (6) and (7) θ is eliminated

$$
\begin{equation*}
p^{2} c^{2}=(h v)^{2}-2(h v)\left(h v^{\prime}\right) \cos \phi+\left(h v^{\prime}\right)^{2} . \tag{8}
\end{equation*}
$$

Total energy of particle is

$$
\begin{align*}
& E=(\text { K.E. })+m_{0} c^{2} \tag{9}\\
& E=\sqrt{m_{0}^{2} c^{4}+\boldsymbol{p}^{2} c^{2}} \tag{I0}
\end{align*}
$$

$$
\begin{gathered}
\text { From (9) and (IO) } \\
\left(K . E .+m_{0} c^{2}\right)^{2}=m_{0}^{2} c^{4}+p^{2} c^{2} \\
p^{2} c^{2}=(K . E .)^{2}+2 m_{0} c^{2}(K . E) \\
\text { But KE }=h v-h v^{\prime}
\end{gathered}
$$

COMPTON EFFECT

$$
\begin{equation*}
p^{2} c^{2}=(h v)^{2}-2(h v)\left(h v^{\prime}\right)+\left(h v^{\prime}\right)^{2}+2 m_{0} c^{2}\left(h v-h v^{\prime}\right) \tag{II}
\end{equation*}
$$

$$
\begin{align*}
& \text { Substituting } p^{2} c^{2} \text { in eq.(8) } \\
& 2 m_{0} c^{2}\left(h v-h v^{\prime}\right)=2(h v)\left(h v^{\prime}\right)(1-\cos \phi)- \tag{I2}
\end{align*}
$$

Dividing eq. (I2) by $2 h^{2} c^{2}$

$$
\frac{m_{0} c}{h}\left(\frac{v}{c}-\frac{v^{\prime}}{c}\right)=\frac{v}{c}-\frac{v^{\prime}}{c}(1-\cos \phi)
$$

Since $\frac{v}{c}=\frac{1}{\lambda}$ and $\frac{v^{\prime}}{c}=\frac{1}{\lambda^{\prime}}$

$$
\frac{m_{0} c}{h}\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}}\right)=\frac{1-\cos \phi}{\lambda \lambda^{\prime}}
$$

COMPTON EFFECT

$$
\begin{aligned}
\lambda^{\prime}-\lambda & =\frac{h}{m_{0} c}(1-\cos \phi) \\
\frac{h}{m_{0} c} & =\lambda_{c} \text { Is Compton Wavelength }
\end{aligned}
$$

CONCLUSION:

I) Compton wavelength gives the scale of wavelength change of incident photon
2) Greatest wavelength change_occurs when $\phi=180$ degree which is twice λ_{c}
3) Maximum wavelength observed in X -Rays for visible it is less than 0.01%
4) X-Rays lose energy when they pass through the matter
5) Compton effect gives conformation to photon model

SUMMARY:

Compton effect is scattering of photon by electron
Energy associated with initial photon of frequency \boldsymbol{v} is $\quad \boldsymbol{E}=\boldsymbol{h} \boldsymbol{v}$

Energy associated with scattered photon of frequency u^{\prime} is $\boldsymbol{E}=\boldsymbol{h} \boldsymbol{v}^{\prime}$

Loss in photon energy=Gain of KE of electron
$\boldsymbol{h} \boldsymbol{v}-\boldsymbol{h} \boldsymbol{v}^{\prime}=\mathbf{K E}$
Momentum is conserved in each two mutually perpendicular direction
COMPTON EFFECT
$\lambda^{\prime}-\lambda=\frac{h}{m_{0} c}(1-\cos \phi)$
$\frac{h}{m_{0} c}=\lambda_{c}$ Is Compton Wavelength $=2.426$ pico metre

NUMERICAL PROBLEMS:

X-ray of wavelength 10.0 pm are scarred from a target.
a) Find the wavelength of Xray scattered through 45°
b) Find maximum wavelength present in the scattered X rays
c) Find maximum kinetic energy of recoil electron

Solution:
Given:
Wave length of incident X-ray $=\lambda=10 \mathrm{pm}=10.0 \times 10^{-12} \mathrm{~m}$
$\frac{h}{m_{0} c}=\lambda_{c}$ Is Compton Wavelength $=2.426 \mathrm{pm}$
Scattered angle $=\phi=45^{\circ}$, Wave length of scattered X-ray $=\lambda^{\prime}=$?
Maximum Wave length of scattered X-ray $=\lambda^{\prime}-\lambda=$?
Maximum kinetic energy of recoil electron=?
a) Compton effect

$$
\begin{aligned}
& \lambda^{\prime}-\lambda=\frac{h}{m_{0} c}(1-\cos \phi)=\lambda^{\prime}-\lambda=\lambda_{c}(1-\cos \phi) \\
& \begin{aligned}
\lambda^{\prime} & =\lambda+\lambda_{c}(1-\cos \phi) \text { substituting the values } \\
\lambda^{\prime} & =10 \mathrm{pm}+2.426 \mathrm{pm}\left(1-\cos 45^{\circ}\right) \\
& =10 \mathrm{pm}+2.426 \mathrm{pm}(1-.707 \mathrm{I})=10 \mathrm{pm}+0.71 \mathrm{pm} \\
& =\text { Wave length of scattered X-ray }=\lambda^{\prime}=10.7 \mathrm{pm}
\end{aligned}
\end{aligned}
$$

NUMERICAL PROBLEMS:

b) Maximum Wave length of scattered X -ray $=\lambda^{\prime}-\lambda$
when $\cos \phi=180^{\circ}$ i.e. $(1-\cos \phi)=2$

$$
\begin{aligned}
\lambda^{\prime} & =\lambda+2 \lambda_{c}=10 \mathrm{pm}+2 \times 2.426 \mathrm{pm} \\
& =10 \mathrm{pm}+4.852 \mathrm{pm}=14.852 \mathrm{pm}
\end{aligned}
$$

Maximum Wave length of scattered X-ray $=\lambda^{\prime}-\lambda=14.852 \mathrm{pm}$
c) Maximum kinetic energy of recoil electron=Difference in energies of incidence and scattered photons

$$
\begin{aligned}
\text { K.E. }_{\text {max }} & =h\left(v-v^{\prime}\right)=\mathrm{hc}\left(\frac{1}{\lambda}-\frac{1}{\lambda^{\prime}}\right) \\
& =\left(6.63 \times 10-34 \times 3 \times 108\left(\frac{1}{10.0 p m}-\frac{1}{14.9 p m}\right)\right. \\
& =6.54 \times 10^{-15} \text { joule } \\
& =\frac{6.54 \times 10-15}{1.6 \times 10-19}=4.08 \mathrm{KeV}
\end{aligned}
$$

$P=h v / c$

$$
\begin{aligned}
E & =m c^{2} \\
E & =m c \cdot c \\
E & =p c \\
p & =\frac{E}{c} \\
p & =\frac{h v}{c}
\end{aligned}
$$

$$
E=\sqrt{m_{0}^{2} c^{4}+p^{2} c^{2}}
$$

Relativistic total energy $=E=m c^{2}=\frac{m_{0} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
Relativistic momentum $=\mathrm{p}=m v=\frac{m_{0} v}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$

$$
\begin{aligned}
& E^{2}=\frac{m_{0}^{2} c^{4}}{1-\frac{v^{2}}{c^{2}}} \text { and } p^{2}=\frac{m_{0}^{2} v^{2}}{1-\frac{v^{2}}{c^{2}}} \\
& E^{2}-p^{2} c^{2}=\frac{m_{0}^{2} c^{4}-m_{0}^{2} v^{2} c^{2}}{1-\frac{v^{2}}{c^{2}}}
\end{aligned}
$$

$$
=\frac{m_{0}^{2} c^{4}\left(1-\frac{v^{2}}{c^{2}}\right)}{\left(1-\frac{v^{2}}{c^{2}}\right)}=m_{0}^{2} c^{4}
$$

$$
E^{2}=m_{0}^{2} c^{4}+p^{2} c^{2}
$$

$$
E=\sqrt{m_{0}^{2} c^{4}+p^{2} c^{2}}
$$

