UNIT 21 WAVES

B.SC. SECOND YEAR (PHYSICS)

BHANUDAS NARWADE

INTRODUCIION:

Oscillatory motion:

Motion that moves to and fro about mean position
Oscillator:
Body that oscillates

Examples of oscillatory motion:

1) Motion of pendulum in a clock.
2) Motion of vibrating string
3) Motion of prongs of funing fork
4) Motion of needle of sewing machine Periodic Motion:
Motion that repeats itself after equal interval of time

WAVES

INIRODUCIION:

Period:

Time taken to complete one oscillation Frequency:
Number of oscillations performed by body in unit time Waves:
An Oscillatory disturbance travelling through medium without of change of form
Wave Motion:
Mode of transfer of energy from one point to another
Through material medium
In the form of oscillatory disturbance
Wave motion transfer energy not matter

Progressive waves:

Waves continuously travels in specific direction

Transverse waves:

Longifudinal waves:

WAVES:

Characteristics of waves

Amplitude(A):

Maximum displacement of paricle from mean position on both sides
Sl unit : meter
Wavelength (λ) :
Distance between two successive particles
 which are in the same state of vibration SI Unit :meter
Frequency (n):
Number of oscillations per unit time SI Unit: hertz (Hz)

RELATION BETWEEN WAVE VELOCIV WAVEIENGTH AND FREQUENCY

Wave velocity (v):
Distance covered by oscillatory disturbance per second.
Wave velocity
$(\mathrm{v})=\frac{\text { Distance covered by wave in one oscillation }}{\text { Time required }}$
$\mathrm{V}=\frac{\text { wavelangth }}{\text { Time }}=\frac{\lambda}{T}$
But $\frac{1}{T}=$ frequency(n)
$\mathbf{v}=\boldsymbol{n} \boldsymbol{\lambda}$

Wave velocity= wave length x Frequency

NUMERICAL PROBLEMS:

Prob. 1: A sounding source sends out waves of length 1.5 m in air. If the velocity of sound in air is $330 \mathrm{~m} / \mathrm{s}$. what is the frequency of sounding source?

SOLUTION:
given data:

$$
\begin{aligned}
& \text { velocity of waves } \quad v=330 \mathrm{~m} / \mathrm{s} \\
& \text { Wavelength of waves } \lambda=1.5 \mathrm{~m} \\
& \text { Frequency of source }
\end{aligned}
$$

Formula: $\quad \mathbf{v}=n \lambda$

$$
\begin{aligned}
\therefore n & =\frac{v}{\lambda} \\
& =\frac{330}{1.5}=220 \mathrm{~Hz}
\end{aligned}
$$

Frequency of sounding source $n=220 \mathrm{~Hz}$

NUMERICAL. PROBLEMS:

Prob.2. The frequency of vibrating tuning fork is 480 Hz and velocity of sound in air is $320 \mathrm{~m} / \mathrm{s}$. How far have sound waves reached when tuning fork has completed 120 vibrations?

SOLUTION:

| given data $:$ | velocity of waves |
| ---: | :--- | | | $v=320 \mathrm{~m} / \mathrm{s}$ |
| ---: | :--- |
| Wavelength of waves | $\lambda=$? |

Distance covered by wave in 120 vibrations $=$?
Formula:

$$
\begin{aligned}
\mathrm{v} & =n \lambda \\
\therefore & \lambda=\frac{v}{n}=\frac{320}{480}=0.66 \mathrm{~m}
\end{aligned}
$$

In one vibration wave covers a distance $=\lambda=0.66 \mathrm{~m}$
\therefore In 120 vibration wave covers $=120 \times 0.66=80 \mathrm{~m}$

SIMPIE HARMONIC PROGRESSIVE WAVES:

Displacement of particle "o" in its origin is

$$
\begin{equation*}
y=a \sin \omega t \tag{1}
\end{equation*}
$$

The displacement at the same instant of paricle "P" at a distance " x " from " 0 " is

$$
y=a \sin \omega t-\phi \cdots(2)
$$

ϕ is phase lag ${ }_{\text {l }} \phi=\frac{2 \pi x}{\lambda}$
equation (2) becomes

$$
y=a \sin \left(\frac{2 \pi t}{T}-\frac{2 \pi x}{\lambda}\right)
$$

EQUATION OF SIMPLI HARMONIC PROGRESSIVE WAVES:

But $V=n \lambda$ or $V=\frac{\lambda}{T}$ or $\quad \frac{1}{T}=\frac{V}{\lambda}$
$y=a \sin \frac{2 \pi}{\lambda}(V t-x) \cdots(3)$
Wave travelling in negative direction of X axis

$$
y=a \sin \frac{2 \pi}{\lambda}(V t+x)
$$

NUMERICAL PROBLEM:

Prob. 1 When a simple harmonic progressive wave is propagated through a medium, the displacement of a particle in cm at any instant of time is given by

$$
y=10 \sin \frac{2 \pi}{100}(36000 t-20)
$$

Calculate i) Amplitude of the vibrating particle ii) Wave velocity iii) Wavelength and iv) time period

Solution:

The given equation of simple harmonic progressive wave is

$$
y=10 \sin \frac{2 \pi}{100}(36000 t-20) \cdots(1)
$$

The standard equation of simple harmonic progressive wave is

$$
\begin{equation*}
y=a \sin \frac{2 \pi}{\lambda}(V t-x) \cdots \tag{2}
\end{equation*}
$$

NUMERICAL PROBLEM:

$$
\begin{align*}
& y=10 \sin \frac{2 \pi}{100}(36000 t-20)+(1) \tag{1}\\
& \left.y=a \sin \frac{2 \pi}{2}(V t-x)-+\gamma\right)(2) \tag{2}
\end{align*}
$$

Comparing equations (1) and (2)
i) Amplitude of vibrating particle $=\mathrm{a}=10 \mathrm{~cm}$
ii) Wavelength of wave
iii) Wave velocity
iv) Frequency $=n=\frac{V}{\lambda}=\frac{36000}{100}=360 \mathrm{~Hz}$
v) Time period $=\mathrm{T}=\frac{1}{n}=\frac{1}{360} \quad=0.00277$ sec.

WAVE VELOCIIV AND PARTICLE VELOCIY:

Wave velocity is the distance covered by oscillatory disturbance per unit time in a medium Velocity of transmission of wave

Particle velocity is the velocity of vibrating particle about mean position.
Velocity of particles vibration

REATION BEIWEENB ARTICLE VELOGIIV AND WAVE VELOCITY:

The standard equation of simple harmonic progressive wave is

$$
y=a \sin \frac{2 \pi}{2}(v t-x)-\cdots(1)
$$

Pariticle velocity is $\mathrm{U}=\frac{d y}{d t}$
Differentiating equation (1) wrt " t "
$U=\frac{d y}{d t}=\frac{2 \pi a v}{\lambda} \cos \frac{2 \pi}{\lambda}(v t-x) \cdots(2)$
Maximum value of particle velocity is
$U_{\max }=\frac{2 \pi a v}{\lambda}$
--.- (3)
$U_{\max }=\frac{2 \pi a v}{\lambda}=\frac{2 \pi a}{\lambda}($ wave velocity $)$
Particle Acceleration is accn $=\frac{d^{2} y}{d t^{2}}$
$\operatorname{acc} n=-\frac{4 \pi^{2} a v^{2}}{\lambda^{2}}\left[\sin \frac{2 \pi}{\lambda}(v t-x)\right]-(4)$
Rewriting accn $=-\frac{4 \pi^{2} v^{2}}{\lambda^{2}}\left[\operatorname{asin} \frac{2 \pi}{\lambda}(v t-x)\right]$
$\operatorname{accn}=-\left(\frac{4 \pi^{2} v^{2}}{\lambda^{2}}\right) y$
Acceleration is maximum when $\mathbf{y}=\mathbf{a}$
\therefore accn $n_{\text {max }}=-\left(\frac{4 \pi^{2} v^{2}}{\lambda^{2}}\right) a \cdots--(5)$

$$
\begin{aligned}
& \text { negative sign indicates acco is directed towards } \\
& \text { mean position. }
\end{aligned}
$$ Differentiating equation (1) wrt " x "

$$
\frac{d y}{d x}=-\frac{2 \pi x}{\lambda} \cos \frac{2 \pi}{\lambda}(v t-x)
$$

$$
\frac{d y}{d x} \text { is slope of displacement curve }
$$

From equation (2) and (6) we have
$U=\frac{d y}{d t}=-v\left(\frac{d y}{d x}\right)$
\therefore Particle velocity
at any instant =wave velocity x slope of dis.curve

UNIT ${ }^{-1}$
 WAVES

DIFFERNTIAL EQUATION OF WAVE MOTION
B.SC. SECOND YEAR (PHYSICS)

BY
BHANUDAS NARWADE

WHAT WE HAVE LEARN:

Waves

Wave motion
Characteristics of waves
Amplifude, wavelength, frequency, wave velocity and period
Progressive waves
Transverse waves
Longitudinal waves
Relation between wave velocity, frequency
and wave length
Equation of SHPW
Wave velocity and particle velocity and relation

DIFEERNTIAN EQUATION OF WAVEMOTION

Consider a SHPW

 The displacement (y) of particle at a distance x from origin at a instant of time (t) is$$
y=a \sin \frac{2 \pi}{\lambda}(v t-x) \cdots(1)
$$

Where:
\boldsymbol{a} is Amplitude
λ is Wavelength
v is Wave velocity
\boldsymbol{t} is instantaneous time
x is position of particle from origin

DIFFERNIIAL EQUATION OF WAVE MOTION:

Parricle velocity is $\mathrm{U}=\frac{d y}{d t}$ Differentiating equation (1) wrt "t"
$\frac{d y}{d t}=\frac{2 \pi a v}{\lambda} \cos \frac{2 \pi}{\lambda}(v t-x)--1(2)$
Particle Acceleration is accn $=\frac{d^{2} y}{d t^{2}}$
Differentiating equation (2) wrt " t "
$\frac{d^{2} y}{d t^{2}}=-\frac{4 \pi^{2} a v^{2}}{\lambda^{2}}\left[\sin \frac{2 \pi}{\lambda}(v t-x)\right] \cdots(3)$

DIFFERNTIAL EQUATION OF WAVE MOTION:

Compression or strain is $\frac{d y}{d x}$
Diferentiating equation (1) wrt " x "

$$
\left.\frac{d y}{d x}=\frac{2 \pi a}{\lambda} \cos \frac{2 \pi}{\lambda}(\nu t-x)-1-1\right)
$$

Rate of change of Compression is $\frac{d^{2} y}{d x^{2}}$ Differentiating equation (4) wrt " x "
$\frac{d^{2} y}{d x^{2}}=-\frac{4 \pi^{2} a}{\lambda^{2}}\left[\sin \frac{2 \pi}{2}(v t-x)\right] \cdots(5)$

DIFFERNTIAL EQUATION OF WAVE MOTION:

From equation (2) and (4)

$\frac{d y}{d t}=-v \frac{d y}{d x}$
From equation (3) and (5)
$\frac{d^{2} y}{d t^{2}}=v^{2} \frac{d^{2} y}{d x^{2}}$
Equation (7) is a differential equation of wave motion

Important in mathematical Physics
Any equation in this form always represent a wave motion

$$
\begin{aligned}
& y=a \sin \frac{2 \pi}{\lambda}(\nu t-x) \\
& \mathrm{U}=\frac{d y}{d t} \\
& a c c n=\frac{d^{2} y}{d t^{2}}
\end{aligned}
$$

Compression or strain $\frac{d y}{d x}$
Rate of change of Compression $\frac{d^{2} y}{d x^{2}}$

COMPARE

$$
\begin{aligned}
& \frac{d y}{d t}=\frac{2 \pi a v}{\lambda} \cos \frac{2 \pi}{\lambda}(v t-x)-+(2) \\
& \frac{d y}{d x}=-\frac{2 \pi a}{\lambda} \cos \frac{2 \pi}{\lambda}(\nu t-x)-1(4)
\end{aligned}
$$

$$
\frac{d y}{d t}=-v \frac{\frac{d y}{d x}}{d x}
$$

COMPARE

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}=-\frac{4 \pi^{2} a v^{2}}{\lambda^{2}}\left[\sin \frac{2 \pi}{\lambda}(\nu t-x)\right]+(3) \\
& \frac{d^{2} y}{d x^{2}}=-\frac{4 \pi^{2} a}{\lambda^{2}}\left[\sin \frac{2 \pi}{\lambda}(v t-x)\right]--(5) \\
& \frac{d^{2} y}{d t^{2}}=v^{2} \frac{d^{2} y}{d x^{2}} \\
& \cdots(7)
\end{aligned}
$$

UNIT: 1 WAVES
 energy of A progressive WAVE

B.SC. SECOND YEAR (PHYSICS)

BY
BHANUDAS NARWADE

WHAT WE HAVE LEARN:

Equation of SHPW

Wave velocity and particle velocity and relation

Differential equation of wave motion

$$
\frac{d^{2} y}{d t^{2}}=v^{2} \frac{d^{2} y}{d x^{2}}
$$

ENERGY OF A PROGRESSIVE WAVE:

In progressive wave energy is continuously transfer

This energy is supplied by source
Energy transferred per second is also corresponds to energy possessed by the particles in a length " v "

Energy of wave is partly kinetic and partly potential

ENERGY OF A PROGRESSIVE WAVE:

K.E. is due to velocity of vibrating pariicle

Velocity is maximum at mean position and zero at extreme position
K.E. is maximum at mean position and zero at extreme position
P.E. is due to displacement of particle from mean position
P.E. is maximum at extreme position and minimum at mean position

In longitudinal wave motion compression and rarefactions are produced

Energy distribution is not uniform over the wave
Transfer of energy and not matter

ANALYTICAL TREATMENT:

Equation of simple harmonic progressive wave is

$$
\begin{aligned}
& y=a \sin \frac{2 \pi}{2}(v t-x) \cdots(1) \\
& \text { Paricle velocity is U= } \frac{d y}{d t}
\end{aligned}
$$

Differentiating equation (1) wrt " t "

$$
\frac{d y}{d t}=\frac{2 \pi a v}{\lambda} \cos \frac{2 \pi}{\lambda}(v t-x) \cdots \cdots(2)
$$

ANALYTIGAL. TREATMENT:

Paricle Acceleration is accn $=\frac{d^{2} y}{d t^{2}}$
Differentiating equation (2) wrt "t"

$$
\frac{d^{2} y}{d t^{2}}=-\frac{4 \pi^{2} a v^{2}}{\lambda^{2}}\left[\sin \frac{2 \pi}{\lambda}(v t-x)\right] \cdots(3)
$$

ANALYTICAL TREATMENT:

Potential energy:

Work done for displacement dy
$=F d y$
If ρ density of medium
Work done per unit volume for dy

$$
=\rho\left(\frac{4 \pi^{2} a v^{2}}{\lambda^{2}} \sin \frac{2 \pi}{\lambda}(v t-x)\right) d y
$$

ANALYIICAL IREATMENT:

Total work done for displacement y is

$$
=\int_{0}^{y} \rho\left(\frac{4 \pi^{2} a v^{2}}{\lambda^{2}} \sin \frac{2 \pi}{\lambda}(v t-x)\right) d y
$$

But

$$
y=a \sin \frac{2 \pi}{\lambda}(v t-x)
$$

\therefore Potential energy per unit volume

$$
\begin{aligned}
& =\left(\frac{4 \pi^{2} \rho v^{2}}{\lambda^{2}}\right) \int_{0}^{y} y d y \\
& =\frac{4 \pi^{2} \rho v^{2}}{2 \lambda^{2}} y^{2} \quad=\frac{2 \pi^{2} \rho v^{2}}{\lambda^{2}} y^{2}
\end{aligned}
$$

ANALYTICAL TREATMENT:

P. E per unit Volume $=\frac{2 \pi^{2} \rho v^{2}}{\lambda^{2}} a^{2} \sin ^{2}\left[\frac{2 \pi}{\lambda}(v t-x)\right]-\cdots(4)$
K.E. per unit volume $=\frac{1}{2} p U^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \rho\left[\frac{2 \pi a v}{\lambda} \cos \frac{2 \pi}{2}(v t-x)\right]^{2}+{ }^{2}+\pi^{2} a^{2} \\
& =\frac{2 \pi^{2}}{\lambda^{2}} \cos ^{2}\left[\frac{2 \pi}{\lambda}(v t-x)\right] \cdots(5)
\end{aligned}
$$

ANALYTICAL TREATMENT:

Adding eq. (4) and (5)

Total energy per unit volume

$$
\begin{aligned}
& =\frac{P \cdot E \cdot}{V O L U M E}+\frac{K . E}{V O L U M E} \\
& =\frac{2 \pi^{2} \rho v^{2} a^{2}}{\lambda^{2}}\left[\sin ^{2} \frac{2 \pi}{\lambda}(v t-x)+\cos ^{2} \frac{2 \pi}{\lambda}(v t-x)\right]
\end{aligned}
$$

Total energy per unit volume $E=\frac{2 \pi^{2} \rho v^{2} a^{2}}{\lambda^{2}}$

$$
E=2 \pi^{2} \rho n^{2} a^{2} \cdots \cdots(6)
$$

ANALYIICAL TREATMENT:

Av. K.E. per unit volume $=\pi^{2} \rho n^{2} a^{2}$
Av. P.E. per unit volume $=\pi^{2} \rho n^{2} a^{2}$
For unit area of cross section,
wave velocity $=v \quad$ Volume $=1 \times v=v$
Energy transferred per unit area per sec. =

$$
=E v=2 \pi^{2} \rho v n^{2} a^{2}
$$

CONCLUSION:

1. P.E. and K.E. of every particle changes with time
2. Av. K.E. per unit volume and Av. P. .E. per unit volume remains constant
3. Total energy per unit volume remains constant
4. Energy of progressive wave at any instant is half kinetic and half potential

$$
\frac{P \cdot E,}{V O L U M E}=\frac{2 \pi^{2} \rho v^{2}}{\lambda^{2}} a^{2} \sin ^{2}\left[\frac{2 \pi}{\lambda}(v t-x)\right]+\cdots(4)
$$

$$
\frac{K \cdot E_{.}}{V O L U M E}==\frac{2 \pi^{2} \rho v^{2} a^{2}}{\lambda^{2}} \cos ^{2}\left[\frac{2 \pi}{\lambda}(v t-x)\right]-(5)
$$

$$
=\frac{2 \pi^{2} \rho v^{2} a^{2}}{\lambda^{2}}\left[\sin ^{2} \frac{2 \pi}{\lambda}(v t-x)+\cos ^{2} \frac{2 \pi}{\lambda}(v t-x)\right]
$$

$$
\frac{\text { TOTAL ENERGY. }}{\text { VOLUNE }}=\underline{E}=\frac{2 \pi^{2} \rho v^{2} a^{2}}{\lambda^{2}}
$$

$$
\begin{aligned}
& y=a \sin \frac{2 \pi}{2}(\nu t-x) \\
& \mathrm{U}=\frac{d y}{d t} \\
& a \mathrm{ccn}=\frac{d^{2} y}{d t^{2}}
\end{aligned}
$$

To obtain potential energy of particle
Work done for small displacement dy = F dy
Total work done foe y and P.E. per unit volume
K.E. per unił volume $=\frac{1}{2} \rho U^{2}$

Total energy per unit volume $=\frac{P . E .}{\text { vOLUME }}+\frac{K . E .}{\text { vOLUME }}$

UNIT ${ }^{-1}$
 WAVES
 EQUATION OF MOTION OF A VIBRATING STRING
 B.SC. SECOND YEAR (PHYSICS)

BY
BHANUDAS NARWADE

1. P.E. and K.E. of every particle changes with time
2. Av. K.E. per unit volume and Av. P .E. per unit volume remains constant
3. Total energy per unit volume remains constant
4. Energy of progressive wave at any instant is half Kinetic and half potential

TRANSVERSE VIBRATION OF STRING

Guitar
 Violin
 Piano

VectorStock ${ }^{\circledR}$

> Guitar-Strings are plucked Violin-Strings are bowed Piano-Strings are struck

EQUATION OF MOTION OF A VIBRATING STRING:

1. Length of string -greater than diameter
2. Perfectly uniform and flexible
3. Stretched between two fixed points
4. Tension in string should be large

5 Effect of gravitational force can be neglected.
6. Tension T in string should be constant everywhere

EQUATION OF MOTION OF A VIBRATING STRING:

$A B$ - stretched string with tension T Plucked at Centre 0

Set into transverse vibration

Under displaced condition
Displaced portion of string is very
small so T is constant everywhere

EQUATION OF MOTION OF A VIBRATING STRING:

Motion is SHM-force ocdisplacement
Undisplaced string is on X axis Displacement of string \perp to length on Y axis

PQ- Small element of plucked string
δx-length of PQ
At PQ tension T acts along tangents PK and QR

EQUATION OF MOTION OF A VIBRATING STRING:

ϕ And $\phi-\delta \phi$ angle of inclination of tangents to curve at P and Q respectively of element δx

Resolving T into mutually \perp
 components

Horizontal components cancel out each other

EQUATION OF MOTION OF A VIBRATING STRING:

Resultant of vertical components in direction of Y axis is
$R=T \sin \phi-T \sin (\phi-\delta \phi)$
$R=T[\sin \phi-\sin (\phi-\delta \phi)]$
$R=T \cos \phi \delta \phi=T \delta(\sin \phi)$
For small $\phi, \sin \phi=$ tan ϕ
From fig.Tan $\phi=\frac{d y}{d x}$ slope of curve

EQUATION OF MOTION OF A VIBRATING STRING:

$$
\because R=T \delta\left(\frac{d y}{d x}\right)
$$

For distance δx

$$
\begin{aligned}
& R=T\left[\frac{d}{d x}\left(\frac{d y}{d x}\right)\right] \delta x \\
& R=T \frac{d^{2} y}{d x^{2}} \delta x \cdots \cdots(2)
\end{aligned}
$$

If m - mass per unit length of string, Mass of element δx is $=\mathbf{m} \delta x$

Acceleration in y direction $=\frac{d^{2} y}{d t^{2}}$

EQUATION OF MOTION OF A VIBRATING STRING:

By Newtons second law of motion
Force=mass x acceleration

$$
\begin{equation*}
=m \delta x \cdot \frac{d^{2} y}{d t^{2}} \tag{3}
\end{equation*}
$$

From equation (2) and (3)

$$
m \delta x \cdot \frac{d^{2} y}{d t^{2}}=T \frac{d^{2} y}{d x^{2}} \delta x
$$

$\frac{d^{2} y}{d t^{2}}=\frac{T}{m} \frac{d^{2} y}{d x^{2}}$. This is differential eqn of Vibrating string

SUMMERY:

Transverse vibration of string is chief source of musical sound.
Under displaced position resultant downward components of tension $=R=T \frac{d^{2} y}{d x^{2}} \delta x$ for length δx Force acting on element δx according to Newton $m \delta x \cdot \frac{d^{2} y}{d t^{2}}$
Under displaced equilibrium condifion
$m \delta x \cdot \frac{d^{2} y}{d t^{2}}=T \frac{d^{2} y}{d x^{2}} \delta x$
$\frac{d^{2} y}{d t^{2}}=\frac{T}{m} \frac{d^{2} y}{d t^{2}}$

Aim: To study motion of vibrating string Un displaced position of string Displaced position of string Under displaced equilibrium condifion of string Forces acting on Small element δx are 1)Resultant downward restoring force due to tension T in string.
2) Resultant upward force due to acceleration in string
Under displaced equilibrium condition of string equating Forces we get equation of motion of string

UNIL 1 WAVES
 VELOCITY OF TRANSVERSE WAVES ALONG A STREICHED STRING
 B.SC. SECOND YEAR (PHYSICS)

 BYBHANUDAS NARWADE

WHAT WE HAVE LEARN:

1. Differential equation of wave motion

$$
\frac{d^{2} y}{d t^{2}}=v^{2} \frac{d^{2} y}{d x^{2}}
$$

2. Differential equation of stretched string

$$
\frac{d^{2} y}{d t^{2}}=\frac{T}{m} \frac{d^{2} y}{d x^{2}}
$$

VELOCITY OF TRANSVERSE WA VES ALONG A STRETCHED STRING:

1. Length of string -greater than diameter
2. Perfectly uniform and flexible
3. Stretched between two fixed points
4. Tension in string should be large

5 Effect of gravitational force can be neglected.
6. Tension T in string should be constant everywhere

VELOCITY Of TRANSVERSE, WAVESALONGA

 STREICHED STRING:Portion PABQ of string in which transverse wave is traveling

AB-Small element of string
O- Centre of curvature of AB

As curvature is small, θ small
T- Tension at A and B tangential TO element at A and B

VELOCITY OF TRANSVERSE WAVES ALONG A

 STREICHED STRING:Resolving tensions at A 1) $T \sin \frac{\theta}{2}$ Perpendicular to string
2) $T \cos \frac{\theta}{2}$ parallel to string

Similarly

Resolving tensions at B

1) $T \sin \frac{\theta}{2}$ Perpendicular to string
2) $T \cos \frac{\theta}{2}$ parallel to string

VELOCITY Of TRANSVERSE, WAVESALONGA

 STREICHED STRING:
Parallel components cancels

 Resultant perpendicular components along CO Resultant tension along CO
$=2 T \sin \frac{\theta}{2}$
as θ small $\sin \frac{\theta}{2}=\frac{\theta}{2}$

VELOCITY OF TRANSVERS WAVES ALONG A STREICHED STRING:

Resultant tension= $2 T \frac{\theta}{2}=1 \theta \cdots \cdots(1)$
For equilibrium position
Resultant tension provides necessary centripetal force
$=\frac{(m \delta x) v^{2}}{R}-----(2)$
$\frac{(m \delta x) v^{2}}{R}=T \theta$

VELOCITY OF TRANSVERSE WAVES ALONG A

 STREICHED STRING:But from fig $\operatorname{Sin} \theta=\frac{\delta x}{R}=\theta=\frac{\delta x}{R}$ $\frac{(m \delta x) v^{2}}{R}=T \frac{\delta x}{R}$
$v^{2}=\frac{T}{m}$
$v=\sqrt{\frac{T}{m}} \cdots-(3)$
Velocity of transverse waves along stretched string

freeuency and period of vibrating string:

Let string fixed at both ends.
Plucked at Centre
Transverse waves set up in string
Reflected at boundary or fixed point and reverse
During one complete vibration wave travels twice length of string
$n=\frac{v}{\lambda}=\frac{v}{2 l}=\frac{1}{2 l} \sqrt{\frac{T}{m}}$

frequency and period of vibrating string:

$\mathrm{n}=\frac{1}{2 l} \sqrt{\frac{T}{m}}$ is the owest mode of vibration called fundamental mode
Period of vibration of fundamental mode

$$
T=\frac{1}{n}=2 l \sqrt{\frac{m}{T}}
$$

If D be diameter of wire
ρ - density of material of wire

frequency and period of vibrating string:

Mass per Unit length $m=\frac{\text { Mass }}{\text { Length }}=\frac{\text { density } \times \text { Volume }}{\text { Length }}=\frac{\rho \pi r^{2} l}{l}$
$\frac{\rho \pi r^{2} l}{l}=\frac{\rho \pi D^{2}}{4}$
Frequency of fundamental moden $=\frac{1}{2 l} \sqrt{\frac{4 T}{\rho \pi D^{2}}}=\frac{1}{D l} \sqrt{\frac{T}{\rho \pi}}$
Period $T=\frac{1}{n}=\mathrm{D} l \sqrt{\frac{\rho \pi}{T}}$

THANK YOU

Wave Equation Modeling of Vibrating String

$>\quad$ The tension is tangential to the curve
T_{1} and T_{2} are the tension at the endpoints P and Q
ρ is the mass of the string per unit length
No motion in the horizontal direction

One dimensional Wave Equation

$$
\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}}
$$

(Vibrations of a stretched string)

Consider a uniform elastic string of length l stretched tightly between points O and A and displaced slightly from its equilibrium position OA . Taking the end O as the origin, OA as the axis and a perpendicular line through O as the y-axis, we shall find the displacement y as a function of the distance x and time t.

Assumptions

(i) Motion takes places in the XY plane and each particle of the string moves perpendicular to the equilibrium position OA of the string.
String is perfectly flexible and does not offer resistance to bending.
(iii) Tension in the string is so large that the forces due to weight of the string can be neglected.
(iv) Displacement y and the slope $\frac{\partial y}{\partial x}$ are small, so that their higher powers can be neglected.

ONE DIMENSIONAL WAVE EQUATION

Question 1: With necessary physical assumptions derive the one dimensional
wave equation $u_{t t}=c^{2} u_{x x}, 0 \leq x \leq L, t \geq 0$.
Consider a string of homogeneous material. Stretch the string to a length L and fix the string at its end points. Distort the string (initial displacement $u(x, 0)=f(x), 0 \leq x \leq L$ and initial velocity $u_{t}(x, 0)=q(x), 0 \leq x \leq L$ at time $\mathrm{t}=0$ and allow it to vibrate. We shal make the following simplifying physical assumptions:

- Mass per unit length ' ρ ' of the string is constant(Offers no resistance for bending. perfectly elastic)
- The applied tension to stretch the string before fixing it at its ends is so large that the effect of gravitational force can be neglected.
- String particles undergo vibrations only in a vertical plane(Displacement remains small in magnitude).

Consider the forces acting on a small portion PQ of length Δx at any time $t>0$. Let T_{1} and T_{2} denotes the tension at the end points P and Q of that portion. Then $-T_{1} \sin \alpha$ and $T_{2} \sin \beta$ are the vertical components of T_{1} and T_{2} respectively.(See figure 1). Since there is no motion in the horizontal plane, the horizontal components of T_{1} and T_{2} are constant. Therefore
(1) $T_{1} \cos \alpha=T_{2} \cos \beta=T=$ const.

By Newtons second law of motion, Force=mass*acceleration.
Thus,
Thus,

$$
T_{2} \sin \beta-T_{1} \sin \alpha=\rho(\Delta x) u_{t t}(\xi, t) \text {, for some } \xi, x \leq \xi \leq x+\Delta x
$$

i.e. $\tan \beta-\tan \alpha=\frac{\rho \Delta x}{T} u_{t t}(\xi, t)$. $($ using (1) and dividing by T).

Taking limit as $\Delta x \longmapsto 0$,
we get $u_{x x}=\frac{\rho}{T} u_{t t}$

3.2 Wave and Heat equations

We derive one dimentional wave equation which is due to the transverse vibration of stretched string. We also derive one dimensional heat equation which is due to the heat flow along a thin bar insulated on all sides. We also discuss the solution of these wo equations.

3.21 Derivation of one dimensional wave equation

Consider a flexible string tightly stretched between two fixed points at a distance l apart. Let ρ be the mass per unit length of the string.
We shall assume the following.
(i) The tension T of the string is same throughout.
(ii) The effect of gravity can be ignored due to large tension T
(iii) The motion of the string is in small transverse vibrations.

Let us consider the forces acting on a small element $A B$ of length δx.
Let T_{1} and T_{2} be the tensions at the points A and B.
Since there is no motion in the horizontal direction, the horizontal components T_{1} and T_{2} must cancel each other.

$$
\begin{equation*}
T_{1} \cos \alpha=T_{2} \cos \beta=T \tag{i}
\end{equation*}
$$

where α and β are the angles made by T_{1} and T_{2} with the horizontal. Vertical components of tension are $-T_{1} \sin \alpha$ and $T_{2} \sin \beta$, where the negative sign is used because T_{1} is directed downwards. Hence the resulant force acting vertically upwards is $T_{2} \sin \beta-T_{1} \sin \alpha$.
Applying Newton's second law of motion, that is
Force $=$ mass \times acceleration, we get

$$
T_{2} \sin \beta-T_{1} \sin \alpha=(\rho \delta x) \frac{\partial^{2} u}{\partial t^{2}}
$$

