UNIT IV

RELATIVITY

Albert Einstein showed that measurement of time and space are affected by motion between observer and object Relativity connects
space and time
Matter and energy
Electricity and magnetism

FRAME OF REFERENCE:

Frame of reference: A system of co-ordinate axes which defines position of particle in two or three dimensional space

- Part of description of motion
- Something is moving always implies specific frame of reference
- An inertial frame of reference in which Newtons first law of motion holds
- Any frame of reference that moves at constant velocity relative to inertial frame is itself an inertial frame

FRAME OF REFERENCE:

All inertial frames are equally valid
All constant velocity motion is relative
There is no universal frame of reference that can be used everywhere Special theory of relativity (1905) -treat problems that involve inertial frames of reference

General theory of relativity(1915)- treat problems that involve noninertial frames of reference or accelerated frames of reference

POSTULATES OF SPECIAL RELATIVITY:

Two postulates

1) Principle of relativity : Laws of physics are the same in all frames of reference

Follows from absence of universal frame of reference
If laws of motion were different for different observers in relative motion then observer could not distinction which of them is stationary and which is motion.

Principle of relativity expresses this fact

POSTULATES OF SPECIAL RELATIVITY:

2) Speed of light postulate: The speed of light in free space has the same value in all inertial frames of reference.
This postulate is based on results of many experiments Speed of light is $2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
This postulate differentiate classical and quantum theory

GALILEAN TRANSFORMATION:

Suppose we are in inertial frame of reference S
Coordinates of event at \dagger are x, y, z
An observer located in different inertial frame S^{\prime} moving with respect to S at constant velocity v
Coordinates of same event at time t^{\prime} are $x^{\prime}, y^{\prime}, z^{\prime}$
For simplicity v is in $+x$ direction How x, y, z, t are related to $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$

GALILEAN TRANSFORMATION:

Before special relativity, transforming measurement from one inertial frame to other seemed obvious.

If clocks in both systems are started when origins of S and S^{\prime} coincides, measurements in the x direction made in S will be greater than those in S^{\prime} by an amount $v t$, which is the distance S^{\prime} has moved in the x direction

$$
\begin{equation*}
x^{\prime}=x-v t \tag{1}
\end{equation*}
$$

There is no relative emotion in y and z direction

So	$y^{\prime}=y$	$--(2)$
And	$z^{\prime}=z$	$---(3)$

With our everyday experience

$$
t^{\prime}=t \quad---(4)
$$

Equation (1), (2), (3) and (4) are Galilean transformation

GALILEAN TRANSFORMATION:

GALILEAN TRANSFORMATION:

According to Galilean transformation Velocity components in S frame and to their equivalent in s^{\prime} frame are
$v_{x}^{\prime}=\frac{d x^{\prime}}{d t^{\prime}}=v_{x}-v$
$v_{y}^{\prime}=\frac{d y^{\prime}}{d t^{\prime}}=v_{y}$
$v_{z}^{\prime}=\frac{d z^{\prime}}{d t^{\prime}}=v_{z}$
Although it looks straightforward but violate postulates of special relativity

LORENTZ TRANSFORMATION:

Nature of correct relationship between x and x^{\prime} is
$x^{\prime}=k(x-v t)$
k does not depends upon either x or t but may be function of v Because of equations of physics are same in both S and S^{\prime}
Corresponding equation for x in terms x^{\prime} and t^{\prime}
$x=k\left(x^{\prime}+v t^{\prime}\right) \quad---(2)$
k must be same for both S and S^{\prime} except direction of v Perpendicular to direction of v there is no difference in y and y^{\prime} and z and z^{\prime}

$$
\begin{align*}
& y=y^{\prime} \tag{3}\\
& z=z^{\prime} \tag{4}
\end{align*}
$$

Time coordinates t and t^{\prime} are not the same Substituting values of x^{\prime} in eq.(2)
$x=k^{2}(x-v t)+k v t^{\prime}$
From which we find
$t^{\prime}=k t+\left(\frac{1-k^{2}}{k v}\right) \mathrm{x}-\cdots-(5)$
Eq. 1 to 5 constitutes a coordinate transformation
Satisfies first postulate of special relativity

LORENTZ TRANSFORMATION:

LORENTZ TRANSFORMATION:

Using second postulate
At $t=0$, origins of both S and S^{\prime} coincides
Flare is set off at common origin S and S^{\prime} at $t=0$,
Observers in both measures same speed of flares of light spread out Both must find same speed c
In frame S
$x=c t \quad----(6)$
In frame S^{\prime}
$x^{\prime}=c t^{\prime}---(7)$

LORENTZ TRANSFORMATION:

Substituting x^{\prime} and t^{\prime} in eq. (7) with eq. (1) and (5)

$$
k(x-v t)=c k t+\left(\frac{1-k^{2}}{k v}\right) c x
$$

Solving for x

$$
x=\frac{c k t+v k t}{k-\left(\frac{1-k^{2}}{k v}\right) c}
$$

LORENTZ TRANSFORMATION:

$$
x=\frac{c k t+v k t}{k-\left(\frac{1-k^{2}}{k v}\right) c}
$$

$$
=c t\left[\frac{k+\frac{v}{c} k}{k-\left(\frac{1-k^{2}}{k v}\right) c}\right]
$$

LORENTZ TRANSFORMATION:

$$
\begin{array}{r}
\quad c t\left[\frac{k+\frac{v}{c} k}{k-\left(\frac{1-k^{2}}{k v}\right) c}\right] \\
x=c t\left[\frac{1+\frac{v}{c}}{1-\left(\frac{1}{k^{2}}-1\right) \frac{c}{v}}\right]--(8)
\end{array}
$$

LORENTZ TRANSFORMATION:

Eq. (8) is same as eq.(6) $x=c t$ provided bracket term equal to 1

$$
\left[\frac{1+\frac{v}{c}}{1-\left(\frac{1}{k^{2}}-1\right) \frac{c}{v}}\right]=1
$$

And

$$
k=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}--(9)
$$

Putting the value of k
Complete transformation measurement of an event made in S corresponding measurement made in S'
Lorentz Transformation

$$
\begin{gathered}
x^{\prime}=\frac{x-v t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}--(10) \\
\left.y=y^{\prime}-\cdots-(1) 1\right)^{0} \\
z=z^{\prime} \quad---(12)
\end{gathered}
$$

O

LORENTZ TRANSFORMATION:

$$
t^{\prime}=\frac{t-\frac{v x}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}--(13)
$$

Lorentz transformation reduces to Galilean transformation when relative velocity v is very less than velocity of light.

Relative motion affect measurement of time interval
Clock that moves wrt observer ticks more slowly than rest
All processes occurs more slowly to an observer in different inertial frame
t_{0} is the time interval between two events in spacecraft
t is same interval has longer time on ground
Proper Time : Event that occurs at same place in observers frame of reference is called proper time t_{0}
From ground same event appears longer than proper time called time dilation

Consider same two clocks
In each clock pulse a light pulse is reflected back and forth between two mirrors L_{0} apart Whenever light strikes the lower mirror, an electric signal is produced that mark recording tape
Each mark corresponds to one tick of ordinary clock

TIME DILATION:

TIME DILATION:

One clock is at rest in a laboratory on the ground
Other in space craft that moves at the speed v relative to ground

Observer in laboratory watches both clocks
Does find ticks at same rate?

Laboratory clock in operation
Time interval between sticks is proper time t_{0} Time required for light pulse to travel between mirrors $=t_{0} / 2$
In time t_{0}, distance travelled $=L_{0}$ Hence $\frac{t_{0}}{2}=\frac{L_{0}}{c}$
c is velocity of light
$t_{0}=\frac{2 L_{0}}{c}$
--(1)

Figure 1.4 A light-pulse clock at rest on the ground as seen by an observer on the ground. The dial represents a conventional clock on the ground.

TIME DILATION:

Moving clock in operation Moving clock with mirrors perpendicular to the direction of motion relative to ground Time interval between ticks is \dagger Because of clock is moving, light pulse, as seen from ground, follows a zigzag path

In $\frac{t}{2}$ time(from lower mirror to upper) Horizontal distance travelled by light pulse $=\frac{v t}{2}$
Total distance $=\frac{c t}{2}$
L_{0} is vertical distance between mirrors

$$
\begin{aligned}
& \left(\frac{c t}{2}\right)^{2}=L_{0}^{2}+\left(\frac{v t}{2}\right)^{2} \\
& \frac{t^{2}}{4}\left(c^{2}-v^{2}\right)=L_{0}^{2}
\end{aligned}
$$

TIME DILATION:
A MOVING CLOCK TICKS MORE SLOWLY THAN CLOCK AT REST

TIME DILATION:

A MOVING CLOCK TICKS MORE SLOWLY THAN CLOCK AT REST

$$
\begin{gathered}
t^{2}=\frac{4 L_{0}^{2}}{\left(c^{2}-v^{2}\right)} \\
=\frac{\left(2 L_{0}\right)^{2}}{c^{2}\left(1-\frac{v^{2}}{c^{2}}\right)} \\
t=\frac{\frac{2 L_{0}}{c}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
\end{gathered}
$$

TIME DILATION:

$\frac{2 L_{0}}{c}$ is time interval t_{0} between ticks on clock on ground
Time dilation:

$$
t=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}--(2)
$$

As $\sqrt{1-\frac{v^{2}}{c^{2}}}$ is always less than 1
t is greater than t_{0}
Moving clock in a space craft appears to tick at a slower rate than stationary on the ground, as seen by observer on ground

Measurement of length as well as time intervals are affected by relative motion
Length L of object in motion wrt observer at rest appears shorter than its length L_{0}
Contraction occurs only in the direction of relative motion Length L_{0} in its rest frame called Proper length
Length contraction:

$$
L=L_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

LENGTH CONTRACTION:

Like time dilation, the length contraction is reciprocal effect
Proper length L_{0} found in the rest frame is the maximum length any observer will measure

Length Contraction

- According to the theory of Special Relativity, objects appear to contract in the direction they are traveling when they are moving as fast as the speed of light.

$$
L=L_{o} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

$\mathrm{L}=$ length of object moving at speed v
Lo = length of object at rest

$\mathrm{V}=0$

Suppose something is moving relative to both S and S' Observer in S measures its three velocity components

$$
v_{x}=\frac{d x}{d t}
$$

$$
v_{y}=\frac{d y}{d t}
$$

$$
v_{z}=\frac{d z}{d t}
$$

Observer in S' measures
$v_{x}^{\prime}=\frac{d x^{\prime}}{d t^{\prime}}$
$v_{y}^{\prime}=\frac{d y^{\prime}}{d t^{\prime}}$
$v_{z}^{\prime}=\frac{d z^{\prime}}{d t^{\prime}}$

VELOCITY ADDITION :

Differentiating inverse Lorentz Transformation equations for x, y, z and t

$$
\begin{aligned}
& d x=\frac{d x^{\prime}+v d t^{\prime}}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& d y=d y^{\prime}
\end{aligned}
$$

$$
d z=d z^{\prime}
$$

$$
d t=\frac{d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

VELOCITY ADDITION :

$$
v_{x}=\frac{d x}{d t}=\frac{d x^{\prime}+v d t^{\prime}}{d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}}
$$

$$
=\frac{\frac{d x^{\prime}}{d t^{\prime}}+v}{1+\frac{v d x^{\prime}}{c^{2} d t^{\prime}}}
$$

Relativistic velocity transformation

$$
v_{x}=\frac{v_{x}^{\prime}+v}{1+\frac{v v_{x}^{\prime}}{c^{2}}}--(1)
$$

VELOCITY ADDITION :

$$
\begin{aligned}
& v_{y}=\frac{v_{y}^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{v v_{x}^{\prime}}{c^{2}}}-\cdots(2) \\
& v_{y}=\frac{v_{y}^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{v v_{x}^{\prime}}{c^{2}}}
\end{aligned}
$$

When objects speed increases its mass also increases

Relativistic mass $=m=\frac{m_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$
Where m is mass of body moving at speed v
m_{0} is rest mass of object
Mass of body moving at a speed of v relative to observer is larger than its
mass when at rest relative to observer by factor $\sqrt{1-v^{2} / c^{2}}$
Increase in mass is reciprocal
Relativistic mass increases are significant only at speeds nearly light

Famous relationship obtained from postulates of special theory of relativity Work done W on object by a constant force F acts through distance s is $W=F s$
When object start from rest, all work done on it becomes K.E.
$\mathrm{KE}=F s$
For variable force, $K E$ is
$\mathrm{KE}=F s$
For variable force, $K E$ is
$K E=\int_{0}^{s} F d s$
In nonrelativistic physics
KE of rest mass m_{0} and speed v is $K E=\frac{1}{2} m v^{2}$

MASS- ENERGY RELATION:

MASS- ENERGY RELATION:

To find correct relativistic formula for KE
Using Newtons second law of motion

$$
K E=\int_{0}^{s} F d s=\int_{0}^{s} \frac{d(m v)}{d t} d s=\int_{0}^{m v} v d(m v)=\int_{0}^{v} v d\left(\frac{m_{0} v}{\sqrt{1-v^{2} / c^{2}}}\right)
$$

Integrating by parts $\left(\int x d y=x y-\int y d x\right)$

$$
K E=\frac{m_{0} v^{2}}{\sqrt{1-v^{2} / c^{2}}}-m_{0} \int_{0}^{v} \frac{v d v}{\sqrt{1-v^{2} / c^{2}}}
$$

MASS- ENERGY RELATION:

$E=M C^{2}$

$$
\begin{align*}
& K E=\frac{m_{0} v^{2}}{\sqrt{1-v^{2} / c^{2}}}-m_{0} \int_{0}^{v} \frac{v d v}{\sqrt{1-v^{2} / c^{2}}} \\
& K E=\frac{m_{0} v^{2}}{\sqrt{1-v^{2} / c^{2}}}+\left[m_{0} c^{2} \sqrt{1-v^{2} / c^{2}}\right]_{0}^{v} \\
& K E=\frac{\frac{m_{0} v^{2}}{\sqrt{1-v^{2} / c^{2}}}-m_{0} c^{2}}{E=m c^{2}-m_{0} c^{2}} \tag{0}
\end{align*}
$$

MASS- ENERGY RELATION:

$\mathrm{E}=\mathrm{MC}^{2}$

$E=m c^{2}-m_{0} c^{2}--(1)$
Result of above eq. states that KE of object is equal to increase in its mass due to relative motion multiplied by square of speed of light

Total energy

$$
\begin{equation*}
m c^{2}=m_{0} c^{2}+K E \tag{2}
\end{equation*}
$$

MASS- ENERGY RELATION:

If we interpret $m c^{2}$ as total energy E of object, at rest $K E=0$ and it possesses the energy $m_{0} c^{2}$
$E=E_{0}+K E$
Where
Rest energy $E_{0}=m_{0} c^{2}-----$-(3)
If object is moving its total energy

$$
E=m c^{2}=\frac{m_{0} c^{2}}{\sqrt{1-v^{2} / c^{2}}}
$$

