UNIT-II
 CLASSICAL STATISTICS AND QUANTUM STATISTICS

Bhanudas Narwade
Dept. of physics
Degloor College,Degloor

Statistical Physics: Studying the macroscopic parameters of system in

 equilibrium from knowledge of microscopic properties of constituents particlesClassical Statistics : Employs classical results of Maxwell's law of molecular velocities distribution and Boltzmann theorem.
Known as Maxwell Boltzmann statistics
Quantum Statistics : Employs quantum theory and developed by Bose, Einstein, Fermi and Dirac like scientist Known as BE and FD statistics

Phase Space

Degree of Freedom :System involve f coordinates of position and f coordinates of momentum.
System with one molecule has f degree of freedom and with N molecule $\mathrm{N} f$ Position Space : In static system, three dimensional space in which location of a particle is completely given by three position co-ordinates A small element in position space denoted by volume element $d V=d x d y d z$ Momentum Space :In dynamic system,system can be specified by three components of momentum $p_{x}=m v_{x}, p_{y}=m v_{y}, p_{z}=m v_{z}$ $P_{x} p_{y}$ and p_{z} in $3 D$ space known as momentum space Small volume element in momentum space is given by $\mathrm{dp}_{x}, \mathrm{dp}_{y}, \mathrm{dp}_{z}$
Phase space

Phase Space

Phase space : Combination of position space and momentum space is known as phase space Phase space has six dimensions
All six coordinates are mutually perpendicular to each other Complete information about any particle in dynamic system obtained from phase space
Small element in a phase space is $\mathrm{d} \tau=(\mathrm{dx} \mathrm{dy} \mathrm{dz})\left(d p_{x} d p_{y} d p_{z}\right)$
Phase cell :Phase space can be divided into large number of cells known as

Maxwell Boltzmann’s Distribution Law

Suppose total amount of energy is to be distributed among system of n particles System consisting of n identical particles Widely separated just like molecules of gas
Particles be distributed among s cells and designated by $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \ldots$
These cells accommodate $n_{1}, n_{2}, n_{3} \ldots .$. particles respectively
Let n_{1} particles in cell A_{1} with energy u_{1}, n_{2} in A_{2} with u_{2} and so on
To distribute total energy - how many particles have energy u_{1}, how many u_{2}
Priori probability g_{i} that particle will occupy $\mathrm{i}^{\text {th }}$ cell is

$$
g_{i}=\frac{v_{i}}{V}---(1)
$$

v_{i} is volume of $\mathrm{i}^{\text {th }}$ cell, V is total volume
$g_{i} \propto$ Volume of cell

Maxwell Boltzmann’s Distribution Law

Priori probability that n particles will occupy $i^{\text {th }}$ cell $=$ gini $^{\text {ni }}$
Probability of distribution of n particles among s cells is
$W=\frac{n!}{n 1!n 2!n 3!}\left(g_{1}\right)^{n_{1}}\left(g_{2}\right)^{n_{2}} \ldots .\left(g_{s}\right)^{n_{s}}$
When cells of equal size $, \mathrm{g}_{1}, \mathrm{~g}_{2}, \ldots . \mathrm{g}_{\mathrm{s}}$ are each equal to $1 / \mathrm{s}$ then eq 2 reduced to
$W=\frac{n!}{n_{1}!n_{2}!n_{3}!}(s)^{-n} \ldots-(3)$
Eq. 2 can be rewriting in the form
$\boldsymbol{W}=\frac{\boldsymbol{n !}}{\boldsymbol{\pi} \boldsymbol{n}_{\boldsymbol{s}}} \boldsymbol{\pi} \boldsymbol{g} \boldsymbol{g}_{s}{ }^{\boldsymbol{n}_{s}}$
Here $\boldsymbol{\pi} \boldsymbol{n}_{\boldsymbol{s}}!=\boldsymbol{n}_{\mathbf{1}}!\boldsymbol{n}_{\mathbf{2}}!\boldsymbol{n}_{\mathbf{3}}!\ldots . . \boldsymbol{n}_{s}!$
$\pi \boldsymbol{g} \boldsymbol{s}^{n_{s}}=\left(g_{1}\right)^{n_{1}}\left(g_{2}\right)^{n_{2}} \ldots\left(g_{s}\right)^{n_{s}}$

Maxwell Boltzmann’s Distribution Law

Taking logarithm of both sides of eq.(6)
$\boldsymbol{l o g} W=\log n!+\log \left(\pi g s^{\boldsymbol{n}_{s}}\right)-\log \left(\pi n_{s}\right)!---(7)$
Using Stirling's approximation formula
$\boldsymbol{\operatorname { l o g }} \boldsymbol{n}!=\boldsymbol{n} \boldsymbol{\operatorname { l o g }} \boldsymbol{n}-\boldsymbol{n}$
$\log \left(\pi g s^{n_{s}}\right)=\log g_{1}{ }^{n_{1}}+\log g_{2}{ }^{n_{2}}+\cdots .+\log \left(g_{s}\right)^{n_{s}}$

$$
\begin{align*}
& =n_{1} \log g_{1}+n_{2} \log g_{2}+\cdots+n s \log g s \tag{8}\\
& =\sum n_{s} \log g s---(9)
\end{align*}
$$

$\log \left(\pi n_{s}\right)!=\log n_{1}!+\log n_{2}!+\ldots .+\log n s!$

$$
\begin{align*}
& =n_{1} \log n_{1} n_{1}+n_{2} \log n_{2}-n_{2}+\cdots . .+n s \log n s-n s \\
& =\left(n_{1} \log n_{1}+n_{2} \log n_{2}+\ldots+n_{s} \log n s\right)-\left(n_{1}+n_{2}+\cdots+n s\right) \\
& =\sum_{n} n_{s} \log n s-n s=\sum n_{s} \log n s-n---(10) \tag{10}
\end{align*}
$$

Maxwell Boltzmann’s Distribution Law

$$
\begin{equation*}
=\sum n_{s} \log n s-n s=\sum n_{s} \log n s-n . \tag{10}
\end{equation*}
$$

Using eq. $7,8,9$ and 10 eq. 7 yields
$\log W=n \log n+\sum n_{s} \log g s-\sum n_{s} \log n s---(11)$
Condition for maximum probability
i) $\boldsymbol{\delta}(\boldsymbol{l o g} W)=\mathbf{0}$ ii) $\delta \sum \boldsymbol{n}_{s}=\mathbf{0}$ and $\sum \boldsymbol{n}_{s} u_{s}=\mathbf{0}--$-(12)

Differentiating eq 11 we get
$\delta(\log W)=\sum \log \boldsymbol{g} \boldsymbol{s} \boldsymbol{\delta n s}-\sum(1+\log n s) \delta n s---(13)$
Using eq 12 ,eq 13 yields
$\sum(\log g s-\log n s) \delta n s-\sum \delta n s=0$
$\sum \log \left(\frac{g s}{n s}\right) \delta n s=o$
$---(14)$ since $\sum \boldsymbol{\delta} \boldsymbol{n s}=\mathbf{0}$

Maxwell Boltzmann’s Distribution Law

Rewriting eq 13 and using $\sum \boldsymbol{\delta} \boldsymbol{n s}=\mathbf{0}$ and $\sum \boldsymbol{u}_{\boldsymbol{s}} \boldsymbol{\delta} \boldsymbol{n} \boldsymbol{s}=\mathbf{0}$ And combining with eq 14 by the method of Lagrange's method of underdetermined multiplier ie. We multiply

$$
\sum \delta n s=0 b y-\alpha \text { and } \sum u_{s} \delta n s=0 b y-\beta
$$

and then adding with eq 14 we obtain
$\sum\left(\log \frac{g_{s}}{n_{s}}-\alpha-\beta \boldsymbol{u s}\right) \boldsymbol{\delta} \boldsymbol{n s}=\mathbf{0}--$ (15)
$\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are Lagrange's multiplier
Eq. 15 holds good for all values of s bracket quantity vanishes

Maxwell Boltzmann’s Distribution Law

$$
\log \left(\frac{g_{s}}{n_{s}}\right)-\alpha-\beta u_{s}=0
$$

Or

$$
g_{s}=n s \exp (\alpha+\beta u s)
$$

$$
n s=\frac{g s}{f} \exp (-\beta u s)--(16)
$$

Here

$$
f=\exp (\alpha)-\cdots----(17)
$$

Eq. 16 is called Maxwell-Boltzmann distribution law $\boldsymbol{\beta}$ are Distribution modulus $\boldsymbol{\beta}=1 / \mathrm{Kt}$ \boldsymbol{f} is degeneracy parameters

Maxwell Boltzmann’s Distribution Law

$\boldsymbol{\beta}$ are Distribution modulus $\boldsymbol{\beta}=1 /$ Kt gives number of particles possessing energy u_{s}

$$
\text { From eq } 16
$$

1) gi depends upon size of cell
2) Cells of equal size having lower energy will filled first then cells having higher energy
3) Number of particles decreases with exponentially with energy.

Bose -Einstein Distribution Law

Particles are identical and indistinguishable
Interchange of two particles between two energy state give new complexation or micro state
system of n indistinguishable particles
Divided into quantum levels such as $n_{1}, n_{2}, n_{3} \ldots n_{i}$ number of particles in groups approximate energies are $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \ldots \varepsilon_{i}$
g_{i} - degeneracy or no. of eigen states or statistical weights of $\mathrm{i}^{\text {th }}$ quantum level

Bose -Einstein Distribution Law

condition for distribution of ni indistinguishable particles in g_{i} states

1) As indistinguishable, no distinction bet'n different ways of choosing
n_{i} particles
2) Each eigen states of $\mathrm{i}^{\text {th }}$ quantum state may contain $0,1,2 \ldots \mathrm{n}_{\mathrm{i}}$
identical particles
3) Sum of energies of all particles in different quantum groups together as total energy of the system
A box containing g_{i} sections or cells and n_{i} particles to be distributed Box is divided into g_{i} sections by $\left(\mathrm{g}_{\mathrm{i}}-1\right)$ partitions

Bose -Einstein Distribution Law

Permutation of n_{i} and ($\mathrm{g}_{\mathrm{i}}-1$) partitions simultaneously=(ni+gi-1)! As groups are internally indistinguishable required number of ways in which n_{i} particles are to be distinguished in gi sublevels of $\mathrm{i}^{\text {th }}$ quantum

$$
\begin{aligned}
\text { group } & =(n i+g i-1)! \\
& =n i!(g i-1)!
\end{aligned}
$$

Thermodynamic probability
$W=\frac{\left(n_{1}+g_{1}-1\right)!}{n_{1}!\left(g_{i}-1\right)!} \cdot \frac{\left(n_{2}+g_{2}-1\right)!}{n_{2}!\left(g_{2}-1\right)!} \ldots \ldots \ldots \frac{(n i+g i-1)!}{n_{i}!\left(g_{i}-1\right)!}$
$W=\Pi_{i} \frac{(n i+g i-1)!}{n_{!}(g i-1)!}$

Bose -Einstein Distribution Law

Since ni and gi are large, neglecting 1

$$
\begin{equation*}
W=\Pi_{i} \frac{(n i+g i)!}{n_{i}!(g i)!} \tag{2}
\end{equation*}
$$

Using Striling's approximation

$$
\log W=\sum\left(n_{i}+g i\right) \log \left(n_{i}+g i\right)-n i l o g n i-g i \log g i
$$

Bose -Einstein Distribution Law

n_{i} varies continuously and g_{i} not subject to variation Differentiation of eq. 2 leads

$$
\delta(\log W)=\sum\left\{\log \left(n_{i}+g i\right)-\log n_{i}\right\} \delta n i
$$

$$
\begin{equation*}
=-\sum_{i}\left\{\log \frac{n_{i}}{n_{i}+g i}\right\} \delta n i . \tag{3}
\end{equation*}
$$

For most probable distribution $\mathrm{W}=\mathrm{W}$ max
$\boldsymbol{\delta}(\boldsymbol{\operatorname { l o g }} \boldsymbol{W} \max)=\mathbf{0}$ and gives
$\sum_{i}\left\{\log \frac{n_{i}}{n_{i}+g i}\right\} \delta n i=0$.

Bose -Einstein Distribution Law

Two conditions are there

1) Total number of particles in a system is constant
ie $n=\sum_{i} n_{i}=$ constant $\quad, \delta n=\sum_{i} \delta n_{i}=\mathbf{0}$
2) Total energy of system is constant
$E=\sum_{i} \epsilon_{i} n_{i}=$ constant,$\delta E=\sum_{i} \epsilon_{i} \delta n i=\mathbf{0}$
using Lagranngian method and multiplying eq, 5 by α and 6 by β and then adding the resulting expression to eq 4
$\sum_{i}\left[\log \left(\frac{n i}{n i+g i}\right)+\alpha+\beta \varepsilon_{i}\right] \delta n i=0$

Bose -Einstein Distribution Law

Since variation of δ ni are independent of each other

$$
\left[\log \left(\frac{n i}{n_{i}+g i}\right)+\alpha+\beta \epsilon_{i}\right]=0
$$

OR

$$
\frac{n i}{n i+g i}=\exp \left(\alpha+\beta \epsilon_{i}\right)
$$

OR

OR

$$
\begin{aligned}
& \frac{g_{i}}{n_{i}}=e^{\alpha+\beta \epsilon_{i}}-1 \\
& n_{i}=\frac{g_{i}}{\left[e^{\alpha+\beta \epsilon_{i}}-1\right]}
\end{aligned}
$$

Bose -Einstein Distribution Law

$$
n i=\frac{g i}{\left[e^{\alpha+\beta \epsilon_{i}}-1\right]}-----(8)
$$

Equation 8 represent most probable distribution of particles among various energy levels for a system obeying B-E statistics known as B-E Distribution law

Fermi-Dirac Distribution Law

System having n indistinguishable particles
Particles divided into quantum levels such that there are $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots . ., \mathrm{n}_{\mathrm{i}}$
number of particles with energy $\epsilon_{1}, \epsilon_{2}, \ldots ., \epsilon_{i}$ respectively
g_{i} be degeneracy or statistical weight
Conditions:

1) Particles are indistinguishable so that there is no distinction between different ways in which n_{i} particles chosen
2) Fermi particles obey Pauli exclusion principle-each cell or sub level may contain 0 or 1 particles i.e.gi must be greater or equal to n_{i}

Fermi-Dirac Distribution Law

3) sum of energies of all particles in different level taken together is the total energy of system.
According to Pauli exclusion principle no cell can occupy more than one particle
Therefore among gi cells only ni cells will occupied by one each Remaining ($\mathrm{g}_{\mathrm{i}}-\mathrm{n}_{\mathrm{i}}$) cells are empty
Number of arrangement of ni particles in gi cells are
$\frac{g_{i}!}{n_{i}!\left(g_{i}-n i\right)!}$

Fermi-Dirac Distribution Law

Total number of eigen states for entire system is
$\boldsymbol{G}=\prod_{i} \frac{g_{i}!}{n_{i}!\left(g_{i}-n i\right)!} \ldots .$. (2)
The probability of system is
$W=\prod_{i} \frac{g_{i}!}{n_{i}!\left(g_{i}-n i\right)!} \times$ constant
Taking log of eq. 3
$\log W=\left[\Pi_{i} \frac{g_{i}!}{n_{i}!\left(g_{i}-n i\right)!} \times\right.$ constant $]$

Fermi-Dirac Distribution Law

$=\sum_{i}\left[\log \boldsymbol{g} i!-\log \boldsymbol{n i}!-\boldsymbol{l o g}\left(\boldsymbol{g}_{i}-\boldsymbol{n i}\right)!+\mathrm{constant}\right] . .(4)$
Using Stirling approximation

$$
\begin{equation*}
\log n!=n \log n-n . \tag{5}
\end{equation*}
$$

Eq. 4 reduces to
$\log W=\sum_{i} g_{i} \log g i-g i-n i \log n i+n i-\left(g_{i}-n i\right) \log \left(g_{i}-n i\right)+\left(g_{i}-n i\right)+c o n s t$
$=\sum_{i}\left[\left(n_{i}-\boldsymbol{g i}\right) \log \left(\boldsymbol{g}_{i}-\boldsymbol{n i}\right)+\boldsymbol{g i l o g} \boldsymbol{g i}-\right.$
nilog ni] + const..(6)

Since gi is not subject to variation and ni varies continuously

Fermi-Dirac Distribution Law

Differentiating eq. 6

$$
\begin{aligned}
\delta \log W & =\sum_{i}\left\{\log \left(g_{i}-n i\right)-\log n i\right\} \delta n i \\
& =-\sum_{i}\left\{\log \frac{n i}{g i-n i}\right\} \delta n i \ldots \ldots \text { (7) }
\end{aligned}
$$

For most probable distribution $\boldsymbol{W}=\boldsymbol{W} \max$ and $\boldsymbol{\delta}\left(\boldsymbol{\operatorname { l o g }} \boldsymbol{W}_{a x}\right)=\mathbf{0}$

$$
\begin{equation*}
\sum_{i}\left\{\log \frac{n i}{g i-n i}\right\} \delta n i=\mathbf{0} \tag{8}
\end{equation*}
$$

Fermi-Dirac Distribution Law

Two subsidiary conditions are

1) Total number of particles of system are constant

$$
n=\sum_{i} n_{i}=\text { const i.e. } \delta n=\sum \delta n i=0-- \text {-(9) }
$$

2) Total energy of the system is constant
$E=\sum_{i} \epsilon_{i} n_{i}=$ const i.e. $\delta E=\sum_{i} \epsilon_{i} \delta n_{i}=0 \ldots$...(10)
using Lagranngian method and multiplying eq, 9 by α and 10 by β and then adding the resulting expression to eq 8
$\sum_{i}\left[\log \left(\frac{n_{i}}{g_{i}-n i}\right)+\alpha+\beta \epsilon_{i}\right] \delta n i=0 \ldots$...(11)

Fermi-Dirac Distribution Law

Since variation of $\boldsymbol{\delta} \boldsymbol{n i}$ are independent of each other, one obtain $\log \frac{n_{i}}{g_{i}-n i}+\alpha+\beta \epsilon_{i}=\mathbf{0}$
On simplification
$\boldsymbol{n i}=\frac{g_{i}}{e^{\alpha+\beta \epsilon_{i}+1}} \ldots . .$. (12)
Equation 12 is F.D. Distribution law

