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Studying the macroscopic parameters of system in
equilibrium from knowledge of microscopic properties of constituents
particles

Employs classical results of Maxwell’s law of
molecular velocities distribution and Boltzmann theorem.
Known as Maxwell Boltzmann statistics
Employs quantum theory and developed by Bose,
Einstein, Fermi and Dirac like scientist
Known as BE and FD statistics
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Phase Space

System involve f coordinates of position and f coordinates
of momentum.
System with one molecule has f degree of freedom and with N molecule N f

In static system,three dimensional space in which location of a
particle is completely given by three position co-ordinates
A small element in position space denoted by volume element dV =dx dy dz
In dynamic system,system can be specified by three
components of momentum p,=mv,, p,=mv,, p,=mv,
P, p, and p, in 3D space known as momentum space
Small volume element in momentum space is given by dp, ,dp, ,dp,
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A

Phase Space

Combination of position space and momentum space is known as

phase space
Phase space has six dimensions

| six coordinates are mutually perpendicular to each other

Complete information about any particle in dynamic system obtained from phase
space

Small element in a phase space is dt =(dx dy dz) (dpxdpydpz)

Phase cell :Phase space can be divided into large number of cells known as
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Maxwell Boltzmann’s Distribution Law

Suppose total amount of energy is to be distributed among system of n particles
System consisting of n identical particles

Widely separated just like molecules of gas

Particles be distributed among s cells and designated by A, A, A,,...

These cells accommodate ny,n,,n,...... particles respectively

Let n, particles in cell A, with energy u,, n, in A, with u, and so on

To distribute total energy — how many particles have energy u;,how many u,
Priori probability g that particle will occupy it" cell is

gi="2— (1
v, is volume of i*" cell, V is total volume
g ;¢ Volume of cell
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Priori probability that n particles will occupy it" cell = gi"
Probability of distribution of n particles among s cells is

n!
W — n1| n2| n3| (gl)nl (QZ)nZ nee s (gS)nS _________ (2)
When cells of 'equal size, g,, 8,, --..8; are each equal to 1/s then eq 2 reduced to

_ n. -n____
W= n!n, nl (S) (3)
Eqg. 2 can be rewriting in the form

n!

W = mﬂ' gsns ----- (4)
Here mwnJ/=n;! n,! n;l..n!  —oo- (5)
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Maxwell Boltzmann’s Distribution Law

Taking logarithm of both sides of eq.(6)

logW = logn! + log ( gs™s) — log (m n,)!---(7)

Using Stirling’s approximation formula

logn'=nlogn—-n - (8)

log (mr gs"s)=log g,"t + log g,"* + ---. +log(g,)™
=n,logg,+n,logg,+ - .+nslog gs
=Y n,log gs ——(9)

log (mn,)! =logn,!+ log n,!+..... +logns!
=n, logn, n,+n,logn,—n,+--..+nslogns —ns
=(n, logn, + n, logn,+..+n log ns)—(n, + n, + --- + ns)

= )y n,logns —ns =) n logns —n---—-(10)
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Maxwell Boltzmann’s Distribution Law

= yn.logns —ns =) n logns—n--(10)
Using eq. 7,8, 9 and 10 eq. 7 yields
logW =nlogn+ ) n,log gs—) n, log ns----(11)
Condition for maximum probability
i)6(logW) =0 i)d)yn,=0and ) nu, =0 ---(12)

Differentiating eq 11 we get

d(logW) =) log gs dns — ),(1 + log ns) é ns ----(13)
Using eq 12 ,eq 13 yields

Y.(log gs — logns)déns —),6ns =0

Y. log (%) ons=0 ----(14)since),dns =0
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Maxwell Boltzmann’s Distribution Law

Rewriting eq 13 and using ), d ns = 0 and Y u . éns =0
And combining with eq 14 by the method of Lagrange’s method of
underdetermined multiplier ie. We multiply

>ns=0by —a and u,éns=0by —
and then adding with eq 14 we obtain

D (log % —a— ﬁus) 6 ns = 0 --—-(15)

aand are Lagrange’s multiplier
Eqg. 15 holds good for all values of s bracket quantity vanishes
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Maxwell Boltzmann’s Distribution Law

log (%)—a—ﬂuszo

Or g, =nsexp (a+ Bus)

ns = % exp (—f us) ---(16)

Here

f = exp(@)-————(17)
Eqg. 16 is called Maxwell-Boltzmann distribution law

P are Distribution modulus S=1/Kt
f is degeneracy parameters
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Maxwell Boltzmann’s Distribution Law

P are Distribution modulus f=1/Kt gives number of particles
possessing energy u,
Fromeq 16
1) gi depends upon size of cell
2) Cells of equal size having lower energy will filled first then cells having
higher energy
3) Number of particles decreases with exponentially with energy.
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Bose —Einstein Distribution Law

Particles are identical and indistinguishable

Interchange of two particles between two energy state give new
complexation or micro state

system of n indistinguishable particles

Divided into quantum levels such as n;,n,,n,...n. number of particles
In groups approximate energies are g,, €,,€;... &,

g. — degeneracy or no. of eigen states or statistical weights of it"
quantum level
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Bose —Einstein Distribution Law

condition for distribution of ni indistinguishable particles in g; states
1) As indistinguishable, no distinction bet’n different ways of choosing
n. particles

2) Each eigen states of it" quantum state may contain 0,1,2...n.
identical particles

3) Sum of energies of all particles in different quantum groups
together as total energy of the system

A box containing g sections or cells and n, particles to be distributed
Box is divided into g, sections by (g-1) partitions
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Bose —Einstein Distribution Law

Permutation of n, and (g-1) partitions simultaneously=(ni + gi — 1)!
As groups are internally indistinguishable required number of ways in
which n. particles are to be distinguished in gi sublevels of it" quantum
group= (ni+gi—1)!

= ni! (gi—1)!
Thermodynamic probability
W — (n,+g9,—1)! (n,+g,—-1)! (ni+gi—1)!

n,!(g~1)! n,!(g,~1)! n ! (g,—1)!
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Bose —Einstein Distribution Law

Since ni and gi are large, neglecting 1

. (ni+gi)!
W =1, n(2)

Using Striling’s approximation

logW = z(ni + gi)log (n; + gi) — nilogni — gi log gi
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Bose —Einstein Distribution Law

n; varies continuously and g; not subject to variation
Differentiation of eq. 2 leads

d(log W) = Z{log(ni + gi) — log n;}oni

=—Zi{log — }Sni ........ (3)

n.+gi
For most probable distribution W=W max
6(log Wmax) = 0 and gives
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Bose —Einstein Distribution Law

Two conditions are there

1) Total number of particles in a system is constant

ie n=),;n,=constant ,n=);6n,=0...5)
2) Total energy of system is constant

E=);en, =constant ,8E =),;eébni =0 ... (6)

using Lagranngian method and multiplying eq,5 by a and 6 by B and
then adding the resulting expression to eq 4

Zillog( m ) | a+ﬁ£i] oni =0 ... (7)

ni+gi
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Bose —Einstein Distribution Law

| Since variation of 0 ni are independent of each other
[log ( n _)+ a+ﬁei] =0

n.tgi

OR gl exp (a + Pe;)
OR

9; _ e tPBEi 1

ni
OR n. = gi__
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Bose —Einstein Distribution Law

. gi
ni = T i (8)

Equation 8 represent most probable distribution of particles

among various energy levels for a system obeying B-E statistics known
as B-E Distribution law
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Fermi-Dirac Distribution Law

System having n indistinguishable particles

Particles divided into quantum levels such that there are n,,n,,.....,n,
number of particles with energy €4, €,...., €; respectively

g. be degeneracy or statistical weight
Conditions:

1) Particles are indistinguishable so that there is no distinction
between different ways in which n, particles chosen

2) Fermi particles obey Pauli exclusion principle —each cell or sub level
may contain O or 1 particles i.e.g must be greater or equal to n,
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Fermi-Dirac Distribution Law

3) sum of energies of all particles in different level taken together is
the total energy of system.

According to Pauli exclusion principle no cell can occupy more than
one particle

Therefore among gi cells only ni cells will occupied by one each
Remaining (g- n.) cells are empty
Number of arrangement of ni particles in gi cells are




The probability of system is

w =1]]; - (g m) X constant .....(3)
Taking Iog of eq. 3
logW = [Hi e '_!m_)' X constant]
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Fermi-Dirac Distribution Law

= Y;llog gi! —logni! — log (g, — ni)! + constant] ..(4)
Using Stirling approximation

logn'=nlogn—n........ (5)

Eqg. 4 reduces to

logW =),;g9;log gi — gi —nilog ni+ ni — (g; — ni)log (g, — ni) + (g; — ni) + const

= Y;[(n; — gi)log (g; — ni) + gilog gi —
nilog ni| + const..(6)

Since gi is not subject to variation and ni varies continuously

DEPT. OF PHYSICS DEGLOOR COLLEGE,DEGLOOR



Fermi-Dirac Distribution Law

Differentiating eq. 6
dlogW =) {log(g;—ni)— log ni}éni

— —Zi{log o } oni ... ... (7)

gi—ni

For most probable distribution W = Wmax and 6 (logWmax) = 0




Fermi-Dirac Distribution Law

Two subsidiary conditions are
1) Total number of particles of system are constant
n=);n,=const ie.dn=>»éni=0--9)
2) Total energy of the system is constant
E=);,en,=const i.e.8E = ) ;€;6n;,=0..(10)

using Lagranngian method and multiplying eq,9 by o and 10 by 3
and then adding the resulting expression to eq 8

D [log (g m) Fa + ﬁei] oni =0 ..(11)




Fermi-Dirac Distribution Law

Since variation of dni are independent of each other, one obtain
n.

log gi_‘m_ a+ Pe; =0
On simplification

. 9d;
ni =g en(12)

Equation 12 is F.D. Distribution law



1. Particles are
distinguishable

2. Only particles are
taken into consideration

3. No restriction on
number of particles in a
given state

Particles are
indistinguishable

Only quantum states are
taken into consideration

No restriction on number
of particles in a given
guantum state

COMPARISION OF THE THREE STATISTICS:

Particles are
indistinguishable

Only quantum states are
taken into consideration

There is restriction on
number of particles in a
given quantum state



4 Volume of state in six Phase space is known V=h?
dimensional space is not
given

5. Number of distinguishable  Number of distinguishable

ways ways
ni+gi—1)!
T 1—[( gi—1)!
(gl —1)!
6 Maximum Probability I\/IaX|mum Probability
distribution distribution
1 1
X e@+pe) X Te@tBe)] — 1

COMPARISION OF THE THREE STATISTICS:

Phase space is known V=h?

Number of distinguishable
ways

. g;'
W= Hni!(gi—ni)!
l

Maximum Probability
distribution
1

X [e(a+[)’el.)] +1




8.Applicable to ideal gas
molecules

9. Internal energy
depends on its temp.

At absolute zero ,energy
IS zero

COMPARISION OF THE THREE STATISTICS:

At high temp.BE statistics At high temp.FD statistics

approaches to MB approaches to MB
statistics statistics

8.Applicable to photons  8.Applicable to electrons

and symmetrical particles and antisymmetrica

known as bosons particles known as
Fermions

Energy at absolute zero is Energy at absolute zero is
taken to be zero not taken to be zero



COMPARISION OF THE THREE STATISTICS:

10. 9, Y,

Y, e = [e(“"'ﬁei) — 1] = [e(“"'ﬁei) + 1]




1) Photon gas

Introduced by S.N.Bose in 1924
Considering thermal radiation as a
photon gas

Obtained Planck’s formula

Einstein developed further idea known
B-E statistics

Photon gas analyser is double walled
hollow sphere with narrow opening at
one point is a perfect absorber as its
inner surface is coated with lamp black
and sharp projection opposite to
opening

APPLICATIONS OF QUANTUM STATISTICS TO:

Photon Gas Analyser



APPLICATIONS OF QUANTUM STATISTICS TO:
1) Photon gas

If thermal radiation enters through narrow opening, absorbed
completely inside by successive multiple reflection as designed by Fery
If enclosure maintained at constant temperature T, atoms of walls of
encloser emits electromagnetic radiation and at the same time these
radiations are absorbed by atoms in walls

Thus atoms of walls will emit and reabsorb photons continuously
When thermodynamic equilibrium is reached,then amount of energy
emitted per unit time is equal to amount of energy absorbed by atom

per unit time



APPLICATIONS OF QUANTUM STATISTICS TO:
1) Photon gas

Thus interaction of em radiation with matter led to idea of
radiation composed of discrete energy particles called
PHOTON

Each photon has energy hv and momentum h/A

Radiation trapped in cavity and in thermal equilibrium walls
of cavity are termed as black body radiation

In equilibrium black body radiation can be considered as
Photon gas



APPLICATIONS OF QUANTUM STATISTICS TO:
2) Electron gas

Metals are good conductors

High conductivity in metals are due to presence of free electrons
Free electrons inside metal moves freely

Continuously collides with fixed atoms and behaves like electron gas
Free electrons belongs to system of fermions

Obeys Pauli’s exclusion principle

Obeys Fermi —Dirac statistics

Electrons in metal have energy quantised



