UNIT -II

STATIONARY WAVES

BEHMUDAS NARW/ADP

STATIONARY WAVES:

When two simple harmonic progressive waves of same amplitude, frequency and wavelength are travelling along the same path but exactly in opposite direction when superpose with
 each other, the resultant formed wave is in the form of loops called stationary waves

CHARACTERISTICS OF STATIONARY

WAVES:

1. Nodes and antinodes are formed
2. Distance between two successive nodes or antinodes $=\lambda / 2$
3. All particles except at nodes, vibrates

4. Amplitude gradually increases from node to antinode
5. All particles in same loop are in phase
6. Does not travels
7. Does not transfer energy

OPEN END ORGAN PIPE OR STRING FRED AT OTHIPR END

Consider SHPW (Incident waves)

$$
y_{1}=a \sin \frac{2 \pi}{\lambda}(v t-x) \cdots(1)
$$

Reflected wave

$$
y_{2}=a \sin \frac{2 \pi}{\lambda}(v t+x) \ldots \text { (2) }
$$

The resultant displacement of the wave

$$
\begin{gathered}
y=y_{1}+y_{2} \\
y=a \sin \frac{2 \pi}{\lambda}(v t-x)+a \sin \frac{2 \pi}{\lambda}(v t+x) \cdots(3)
\end{gathered}
$$

OPEN END ORGAN PIPE OR STRING FRED AT OTHIPR END

$y=2 a \cos \frac{2 \pi x}{\lambda} \sin \frac{2 \pi v t}{\lambda}$
The resultant vibration of a particle represents SHM Amplitude of resultant vibration is

$$
\begin{equation*}
A=2 a \cos \frac{2 \pi x}{\lambda}---- \tag{5}
\end{equation*}
$$

The velocity of particle at any instant of time is $\frac{d y}{d t}$ Differentiating equation (4) wrt. Time

$$
\begin{equation*}
\frac{d y}{d t}=\frac{4 \pi a v}{\lambda} \cos \frac{2 \pi x}{\lambda} \cos \frac{2 \pi v t}{\lambda} \tag{6}
\end{equation*}
$$

OPEN END ORGAN PIPE OR STRING FRED AT OTHER DND

Acceleration of the particle at any instant is $\frac{d^{2} y}{d t^{2}}$
Differentiating equation(6) with time
$\frac{d^{2} y}{d t^{2}}=-\frac{8 \pi^{2} a v^{2}}{\lambda^{2}} \cos \frac{2 \pi x}{\lambda} \sin \frac{2 \pi v t}{\lambda}$
strain or compression at any point is $\frac{d y}{d x}$
Differentiating equation(4) with x
$\frac{d y}{d x}=-\frac{4 \pi a}{\lambda} \sin \frac{2 \pi x}{\lambda} \sin \frac{2 \pi v t}{\lambda}$
Eq. shows amplitude, velocity, acceleration and strain changes with time and positions

(1) CHANGDS WITH RESPECT TO POSITION:

Consider the positions, where $\sin \frac{2 \pi x}{\lambda}=0$ and $\cos \frac{2 \pi x}{\lambda}= \pm 1$
From eq, (4) to (8)
Displacement, $y= \pm 2 a \sin \frac{2 \pi v t}{\lambda}$

Amplitude,

$$
\begin{equation*}
A= \pm 2 a \tag{10}
\end{equation*}
$$

Velocity,

$$
\begin{equation*}
\frac{d y}{d t}= \pm \frac{4 \pi a v}{\lambda} \cos \frac{2 \pi v t}{\lambda}-- \tag{11}
\end{equation*}
$$

CHANGES WITH RDSPDCT TO POSITION:

Acceleration, $\quad \frac{d^{2} y}{d t^{2}}= \pm \frac{8 \pi^{2} a v^{2}}{\lambda^{2}} \sin \frac{2 \pi v t}{\lambda}--$ (12)

Strain,

$$
\begin{equation*}
\frac{d y}{d x}=0 \tag{13}
\end{equation*}
$$

As strain is zero, these positions corresponds to Antinodes

$$
\therefore \sin \frac{2 \pi x}{\lambda}=0
$$

But $\sin m \pi=0$
Where $\mathrm{m}=0,1,2,3$ etc

(1) CHANGDS WITH RDSPECT TO POSITION:

$\therefore \sin \frac{2 \pi x}{\lambda}=0$
But $\sin \mathrm{m} \pi=0$
Where $\mathrm{m}=0,1,2,3$ etc
$\therefore \sin \frac{2 \pi x}{\lambda}=m \pi$
OR
$x=\frac{m \lambda}{2}$ or $\quad \mathrm{x}=0, \frac{\lambda}{2}, \lambda, \frac{3 \lambda}{2}---$ etc
Thus antinodes are equidistant and separated by $\frac{\lambda}{2}$

(1) CHANGES WITH RESPECT TO POSITION:

At $x=0$, the position of interface is an antinode
Position of open end of organ pipe - Antinode
Free end of stretched string - Ântinode

(2) CHANGES WITH RDSPECT TO POSITION:

Consider the positions, where $\sin \frac{2 \pi x}{\lambda}= \pm 1$ and $\cos \frac{2 \pi x}{\lambda}=0$
From eq, (4) to (8)
Displacement, $\quad y=0----(14)$
Amplitude,

$$
\begin{equation*}
A=0 \tag{15}
\end{equation*}
$$

Velocity,

$$
\frac{d y}{d t}=0----(16)
$$

(2) CHANGES WITH RDSPECT TO POSITION:

Acceleration, $\quad \frac{d^{2} y}{d t^{2}}=0$

Strain,

$$
\frac{d y}{d x}= \pm \frac{4 \pi a}{\lambda} \sin \frac{2 \pi v t}{\lambda}
$$

As strain is maximum, these positions corresponds to nodes

$$
\therefore \cos \frac{2 \pi x}{\lambda}=0
$$

But $\cos (2 m+1) \frac{\pi}{2}=0 \quad$ Where $m=0,1,2,3$ etc

(2) CHANGES WITH RESPECT TO POSITION:

$\therefore \cos \frac{2 \pi x}{\lambda}=\cos (2 m+1) \frac{\pi}{2}=0$
$\therefore \frac{2 \pi x}{\lambda}=(2 m+1) \frac{\pi}{2}$
OR
$x=\frac{(2 m+1) \lambda}{4}$ or

$$
x=\frac{\lambda}{4}, \frac{3 \lambda}{4}, \frac{5 \lambda}{4}--- \text { etc }
$$

Thus nodes are equidistant and separated by $\frac{\lambda}{2}$

(1) CHANGDS WITH RDSPDCT TO TIME:

Consider the instant of time, where $\sin \frac{2 \pi v t}{\lambda}=0$ and $\cos \frac{2 \pi v t}{\lambda}= \pm 1$
From eq, (4) to (8)
Displacement, $\quad y=0$

Amplitude,

$$
A=2 a \cos \frac{2 \pi x}{\lambda} \text { (Independent of time) }
$$

Velocity,

$$
\frac{d y}{d t}= \pm \frac{4 \pi a v}{\lambda} \cos \frac{2 \pi v t}{\lambda}
$$

CHANGES WITH RESPDCT TO TIME:

Acceleration, $\quad \frac{d^{2} y}{d t^{2}}=0$

Strain,

$$
\begin{aligned}
& \frac{d y}{d x}=0 \\
\therefore & \sin \frac{2 \pi v t}{\lambda}=0
\end{aligned}
$$

But
$\sin m \pi=0$

Where $\quad \mathrm{m}=0,1,2,3$ etc

(1) CHANGDS WITH RDSPDCT TO TIME:

$$
\therefore \sin \frac{2 \pi v t}{\lambda}=m \pi
$$

OR

$$
\mathrm{t}=\frac{m \lambda}{2 v}
$$

$$
\begin{aligned}
\text { But } \quad \begin{aligned}
\frac{v}{\lambda}= & = \\
\mathrm{t} & =\frac{1}{T} \\
\mathrm{t} & =0, \frac{T}{2}, T, \frac{3 T}{2} \cdots-\mathrm{etc}
\end{aligned} \\
\end{aligned}
$$

Twice in each time period, particle pass through their mean position

(2) CHANGES WITH RDSPECT TO TIME:

Consider the instant of time, where $\sin \frac{2 \pi v t}{\lambda}= \pm 1$ and $\cos \frac{2 \pi v t}{\lambda}=0$
From eq, (4) to (8)
Displacement, $\quad y= \pm 2 a \cos \frac{2 \pi x}{\lambda}$
Amplitude, $\quad \bar{A}=2 a \cos \frac{2 \pi x}{\lambda}$ (Independent of time)
Velocity,

$$
\frac{d y}{d t}=0
$$

(1) CHANGDS WITH RDSPDCT TO THME:

Acceleration, $\quad \frac{d^{2} y}{d t^{2}}= \pm \frac{8 \pi^{2} a v^{2}}{\lambda^{2}} \cos \frac{2 \pi x}{\lambda}$

Strain,

$$
\begin{aligned}
& \frac{d y}{d x}=\mp \frac{4 \pi a}{\lambda} \sin \frac{2 \pi x}{\lambda} \\
\therefore & \sin \frac{2 \pi v t}{\lambda}= \pm 1
\end{aligned}
$$

But

$$
\sin (2 m+1) \frac{\pi}{2}= \pm 1
$$

Where $\mathrm{m}=0,1,2,3$ etc

(2) CHANGES WITH RDSPECT TO TIME:

$$
\begin{aligned}
& \therefore \sin \frac{2 \pi v t}{\lambda}=\sin (2 m+1) \frac{\pi}{2}= \pm 1 \\
& \therefore \frac{2 \pi v t}{\lambda}=(2 m+1) \frac{\pi}{2} \\
& t=\frac{(2 m+1) \lambda}{4 v} \quad \text { But } \frac{v}{\lambda}=n=\frac{1}{T} \\
& \mathrm{t}=\frac{T}{4}, \frac{3 T}{4}, \frac{5 T}{4}-\ldots-\text { etc }
\end{aligned}
$$

Thus at these instants particle is at extreme position called stationary instants.

