Real Gases AndTheir Behavior

BY

Bhanudas Narwade
Asst. Prof.
Degloor College,Degloor

Andrew's Experiment on CO_{2}

- Principle :

Measure volume of fixed mass of gas at various pressures at a given constant temperature and isothermals are drawn .Various isothermals for different fixed temperatures are obtained. The deviation from ideal gas law can be studied

Apparatus:

Two similar glass tubes A and B having capillary tubes C and C^{\prime} at top
In tube A pure dry air is passed for long time and ends are sealed

In tube B experimental gas CO_{2} is passed for long time and ends are sealed

Andrew's Experiment on CO_{2}

Lower ends of both tubes are immersed in mercury Small pallets of mercury drawn in both tubes by alternately heating and cooling the tubes
Both tubes are fixed in H shaped copper vessel having stoppers S and S^{\prime}
The vessel is filled with water
By screwing in plunger water is compressed and pressure up to 400 atmosphere can applied.
Since pressure on A and B are same, from volume of air in A , pressure of CO 2 can be calculated
Volume of B can read directly

Temperature of CO_{2} maintained at desire (o to $100^{\circ} \mathrm{C}$)

Andrew's Experiment on CO_{2}

Result:

Isothermals are drawn at various temperatures

1. At $13.1^{\circ} \mathrm{C} A B$ represent gaseous state of CO_{2} up to point B and obeys Boyles law.
2. From B to C it shows an enormous decrease in volume with slight increase in pressure.
3. BC represents change of CO_{2} from gaseous to liquid state
4. At C gas has been completely liquefied and portion CD represent the liquid state of CO_{2}

5. At 21.50 C the curve is similar, horizontal portion (FG) decreases

Andrew's Experiment on CO_{2}

Result:

At 31.1 oC Horizontal portion vanished called critical isothermal for CO_{2}
Above this temperature gas can not be liquified At 35.50C and 48.1 oC no horizontal portion, gas can not liquified and Boyles law is obeyed from one end to other

Andrews isotherms of carbondioxide

Andrew's Experiment on CO_{2}

Experimental Findings:

1. Andrew found liquification of CO_{2} occurred only below 31.10 C called critical temperature
2. There is no physical distinction between liquid and gas on horizontal portion of isothermal
3. Gas behaves almost as perfect above critical temperature
4. Density of liquid and vapour becomes equal at critical point

Andrews isotherms of carbondioxide

Andrew's Experiment on CO_{2}

Definitions:

1. Critical point: Point on isothermal at which gas is liquified
2. Critical isothermal: Isothermal corresponding to critical temperature
3. Critical Temperature (Tc): The highest temperature at which a gas can be liquified by increase of pressure alone
4. Critical Pressure (Pc): Pressure applied to gas at its

Andrews isotherms of carbondioxide critical temperature so that it get liquified
5. Critical Volume (Vc): The particular volume of gas at critical pressure and volume

Amagat's Experiment

Amagat performed series of experiments with hydrogen, nitrogen and CO2 to study their behavior at high pressure

Apparatus:
Large metallic cylinder of mercury having large screw plunger S fitted to end

Apparatus was arranged at base of mine 327 m deep
 subjecting about 423 atmospheric pressure

Long steel manometer about 1000 feet fixed along the shaft of coal mine and opened at top

Calibrated inverted tube A contains experimental gas
Oil bath surrounds the tube

Amagat's Experiment

Amagat plotted isothermal between PV and P For Hydrogen Gas:
All isothermals are parallel
Product PV increases with increase of Pressure Hydrogen is less compressible
 Isothermals do not sag
For Nitrogen Gas:
PV first decreases with increase of P
Attains minimum
And increases slowly with pressure Sag is found at lower temperature For CO2 Gas:
Minima is more pronounced

Amagat's Experiment

Experimental findings:

No gas obeys Boyles law at higher pressure
All gases shows same pattern of deviation from Boyles law
Greater deviation from Boyles law is found near critical temperature

The gas which liquified easily shows more deviation from Boyles law

Behavior of gases at high pressure:

General nature of curves same for all gases

1. At high temp. PV increases with P
2. At low temp. PV decreases initially with increase in P attains minimum and then increases with P
3. Locus of minima shown by dotted curve A
4. At temp. below the critical temp. sudden decrease in PV with increase in P corresponds to change of state from gas to liquid
5. When liquification is complete, PV gradually increase with P

6. Shaded area represents region of liquification
7. Boyles law is obeyed at high temp and low pressure

POROUS PLUG EXPERIMENT:

Joule -Tomson Effect :

When a gas under constant pressure is allowed to pass through insulated porous plug to a region of constant lower pressure, the temperature of escaping gas changes.
Changes in temperature \propto pressure difference on two sides
Apparatus:
Prous plug having perforated brass discs D,D Space is packed with cotton wool or silk fibre Porous plug is fitted in a cylindrical box wood tube surrounds vessel containing cotton wool to avoid loss or gain of heat from surrounding
T_{1} and T_{2} are sensitive thermometrs

POROUS PLUG EXPERIMENT:

Joule -Tomson Effect :

Gas is compressed to high pressure with the help of piston P
Passed through spiral tube immersed in water bath maintained at constant temperature Heat developed due to compression is taken by circulating water

Working:

Compressed gas passed through porous plug Plug acts as narrow orifices in parallel Throttling process Work is done by the gas in overcoming the intermolecular attraction
T2 measures temperature of outgoing Pressure gauge measures pressure of incomings

POROUS PLUG EXPERIMENT:

Joule -Tomson Effect :
The behaviour of different gases $\mathrm{O}_{2}, \mathrm{~N} 2$ etc over range of temp. (4° to $100^{\circ} \mathrm{C}$) and (4.5 to 1 atm) pressure range
Observations:
1 All gas shows change in temperature or J-T effect on passing through porous plug
2 At low enough temperature all gas shows cooling effect
3 At ordinary temp, most gas shows cooling effect except hydrogen
4 Greater the pressure difference, greater fall in temperature and vice a versa
5 Fall in temperature decreases as initial temperature of the gas is raised
6 There is inversion temperature (T_{i})for every gas at which J-T effect is zero i.e. fall in temp. passing through porous plug becomes zero and above which it shows heating effect

VAN DER WAALS EQUATION OF STATE:

1897 an der Waal modified perfect gas equation $P V=R T$ by applying correction in

1. Intermolecular forces of attraction
2. Finite size of molecule Correction for pressure:
Net force acting on molecule inside the vessel is zero
At wall it is pulled back by other

Velocity and momentum is less than in the absence of force of attraction
Reduction in momentum result in decrease in pressure tan actual
Correction depends on

VAN DER WAALS EQUATION OF STATE:

Correction depends on

1. No. Of molecules striking per unit area per unit time on walls
2. Resultant inward pull of cohesion on striking molecule Each of these proportional to density of gas
\therefore Correction for pressure

$$
\begin{aligned}
& p \propto \rho^{2} \propto \frac{1}{V^{2}} \\
& \therefore p=\frac{a}{V^{2}}
\end{aligned}
$$

Corrected or Real pressure $=P+p=\left[P+\frac{1}{V^{2}}\right]$
P is observed pressure

VAN DER WAALS EQUATION OF STATE:

Correction for volume:
Due to finite size of gas molecule actual size available for movement is less than volume of vessel
Molecules have sphere of influence around radius (2r) within no molecule can penetrate
Volume of molecule $=x=\frac{4}{3} \pi r^{3}$
Volume of sphere of influence of each molecule $=x=\frac{4}{3} \pi(2 r)^{3}$

$$
s=\frac{4}{3} \pi(2 r)^{3}=8 x
$$

Volume available for first molecule $=V$
Volume available for second molecule $=V-8 x$
Volume available for $\mathrm{n}^{\text {th }}$ molecule $\quad=[V-(n-1) s]$

VAN DER WAALS EQUATION OF STATE:

Correction for volume:
Average space available for each molecule

$$
\frac{V+(V-s)+(V-2 s)+\cdots+[V-(n-1) s]}{n}
$$

$=\frac{n V}{n}-\frac{s}{n}[1+2+3+\cdots .+(n-1)]$
$=V-\frac{s}{n} \cdot \frac{(n-1) n}{2}$
$V-\frac{n s}{2}+\frac{s}{2}$ As no. of molecules are larger than $s / 2$
Average space available for each molecule $=V-\frac{n s}{2}$

VAN DER WAALS EQUATION OF STATE:

Correction for volume:
Average space available for each molecule $=V-\frac{n s}{2}$

$$
\begin{gathered}
=V-\frac{n(8 x)}{2} \\
=V-4 n x \\
=V-b
\end{gathered}
$$

Where $b=4 n x$ four times actual volume of molecule Van der Waals equation for state

$$
\left[P+\frac{1}{V^{2}}\right](V-b)=R T
$$

a and b are Van der Waals constants

CRITICAL CONSTANTS:

At critical point the ratio of $\frac{d P}{d V}=0$ called point of inflection At point of inflection $\frac{d^{2} P}{d V^{2}}=0$
Van der Waals equation $\left[P+\frac{1}{V^{2}}\right](V-b)=R T$ $P=\frac{R T}{V-b}-\frac{a}{V^{2}}---1$
$\therefore \frac{d P}{d V}=\frac{-R T}{(V-b)^{2}}+\frac{2 a}{V^{3}}--2$
And $\frac{d^{2} P}{d V^{2}}=\frac{2 R T}{(V-b)^{3}}-\frac{6 a}{V^{4}}--3$

CRITICAL CONSTANTS:

At critical point we have $\mathrm{T}=\mathrm{T}_{\mathrm{C}} \quad \mathrm{P}=\mathrm{P}_{\mathrm{C}}, \quad \mathrm{V}=\mathrm{V}_{\mathrm{C}}, \quad \frac{d P}{d V}=0 \quad$ and $\frac{d^{2} P}{d V^{2}}=0$ Substituting

$$
\begin{align*}
& P_{c}=\frac{R T_{c}}{V_{c}-b}-\frac{a}{V_{c}{ }^{2}} \\
& \frac{R T_{c}}{\left(V_{c}-b\right)^{2}}=\frac{2 a}{V_{c}^{3}} \tag{5}\\
& \frac{2 R T_{c}}{\left(V_{c}-b\right)^{3}}=\frac{6 a}{V_{c}{ }^{4}} \tag{6}
\end{align*}
$$

(4)

Dividing 5 by 4

$$
\begin{equation*}
\frac{V_{c}-b}{2}=\frac{V_{c}}{3} \quad \text { OR } \quad 3 V c-3 b=2 V c \text { OR } \quad V_{C}=3 b \tag{7}
\end{equation*}
$$

(4) CRITICAL CONSTANTS:

Substituting Vc in 5
$\frac{R T_{c}}{(3 b-b)^{2}}=\frac{2 a}{(3 b)^{3}} \quad=\frac{R T_{c}}{4 b^{2}}=\frac{2 a}{27 b^{3}}$
$T_{c}=\frac{8 a}{27 b R}$
Substituting V_{C} and T_{C} in eq. 4
$P_{c}=\frac{8 a R}{27 b R(3 b-b)}-\frac{a}{(3 b)^{2}}=\frac{8 a}{27 \times 2 b^{2}}-\frac{a}{9 b^{2}}$
$P_{c}=\frac{a}{27 b^{2}}$

VAN DER WAALS CONSTANTS:

$T_{c}=\frac{8 a}{27 b R}$
$\frac{a}{b}=\frac{27 R T c}{8} \quad--(10)$
but
$P_{c}=\frac{a}{27 b^{2}}$
$\frac{a}{b^{2}}=27 P_{c} \quad--(11)$
Dividing 10 by 11
$\frac{a}{b} \times \frac{b^{2}}{a}=\frac{27 R T c}{8} \times \frac{1}{27 P_{c}} \quad=b=\frac{R T_{c}}{8 P c}$
$a=\frac{27 R^{2} T_{c}{ }^{2}}{64 P c}$

REDUCED EQUATION OF STATE:

The quantity $\frac{R T C}{P_{C} V C}$ is called critical coefficients
$\frac{R T C}{P_{C} V C}=\frac{8}{3}$ and is same for all gases
Let $\alpha=\frac{P}{P_{c}}, \beta=\frac{V}{V_{c}}$ and $\gamma=\frac{T}{T_{c}}$ and $P=\alpha P_{c}, V=\beta V_{c}$, and $T=\gamma T_{c}$
Vander Waals equation $\left[P+\frac{c_{1}}{V^{2}}\right](V-b)=R T$

Substituting P, V and T
We get
$\left[\alpha+\frac{3}{\beta^{2}}\right](3 \beta-1)=8 \gamma$ is reduced equation of state

Boyle Temperature, Temperature of Inversion and critical temperature and relations between them

Boyle temperature $\left(T_{B}\right)$: Temperature above which a real gas behaves like an ideal gas and obeys Boyles law
Temperature of inversion $\left(\mathrm{T}_{\mathrm{i}}\right)$: Particular temperature at which J-T effect changes its sign
Critical Temperature (Tc): The highest temperature at which a gas can be liquified by increase of pressure alone
Relations
$T_{B}=\frac{a}{R b} \quad T_{i}=\frac{2 a}{R b} \quad$ and $\quad T_{c}=\frac{8 a}{27 b R}$
$T_{i}=2 T_{B}$
$\frac{T_{i}}{T_{c}}=\frac{27}{4}=6.75$ and does not depends upon nature of gas

