THERMOMETRY

THERMOMETRY:

Thermometry:

Branch of heat pertaining to measurement of temperature of body Thermometer:

Instrument used to measure the temperature of body
Types of Thermometers:

1. Liquid thermometer

Principle: Change in volume of liquid with change in temperature
Example: Mercury, alcohol

THERMOMETRY:

2. Gas thermometers:

Principle: change in pressure or volume with change in temperature Example : Hydrogen, Calander's constant pressure thermometer

3. Resistance Thermometers:

Principle : change of resistance with change of temperature
Example : Platinum resistance thermometer
4. Thermoelectric thermometer :

Principle: Thermoelectricity (production of thermo emf in thermocouple when two junctions are at different temperature

THERMOMETRY:

Various thermocouples are
Copper - constantan Iron-constantan Platinum-Rhodium

5. Radiation Thermometers:

Principle: quantity of heat radiations emitted by a body
Examples: Furnaces known as pyrometers
6. Vapour Pressure Thermometers:

Principle: change of vapour pressure with change in temperature Used to measure very low temperature

Example: Helium vapour pressure thermometer

THERMOMETRY:

7. Bimetallic thermometers:

Principle : Expansion of solids
Used in meteorology , day time and at higher altitude
8. Magnetic Thermometer:

Principle: change in susceptibility of a substance with temperature
Used for low temperature near absolute zero

Liquid Thermometer

Termoelectric Thermometer

THERMOMETRY:

Gas Thermometer

Radiation Thermometer

Resistance Thermometer

Vapour pressure Thermometer

CENTIGRADE, FAHRENHEIT AND RANKINE SCALES:

First thermometer was constructed by Galileo in 1593
Newton suggested necessity of fixed scales
Temperature of melting point (MP) of ice as lower fixed point Steam point(BP) of water as Upper fixed point at normal pressure

CENTIGRADE, FAHRENHEIT AND RANKINE SCALES:

1. Centigrade (Celsius) scale :

Celsius(1742) suggested the centigrade scale
Lower fixed point (MP) of ice is at zero
Upper point (BP) of water is at 100
Interval between two fixed point is equally divided by 100
Each point is $1^{0} \mathrm{C}$

CENTIGRADE, FAHRENHEIT AND RANKINE SCALES:

2. Fahrenheit scale :

Fahrenheit (1720) suggested the Fahrenheit scale
Lower fixed point (MP) of ice is at 32
Upper point (BP) of water is at 212
Interval between two fixed point is equally divided by 180
Each point is $1^{0} \mathrm{~F}$

CENTIGRADE, FAHRENHEIT AND RANKINE SCALES:

3. Kelvin scale :

Kelvin suggested the Kelvin scale
Lower fixed point (MP) of ice is at 273
Upper point (BP) of water is at 373
Interval between two fixed point is equally divided by 100
Each point is 1 K

CENTIGRADE, FAHRENHEIT AND RANKINE SCALES:

4. Rankin scale :

Rankin suggested the Rankin scale
Lower fixed point (MP) of ice is at 492
Upper point (BP) of water is at 672
Interval between two fixed point is equally divided by 180
Each point is $1^{0} R$

TEMPERATURE SCALES:

RELATION BETWEEN TEMPERATURE SCALES:

PROBLEMS:

$$
\frac{C-0}{100}=\frac{F-32}{180}=\frac{K-273}{100}=\frac{R-492}{180}
$$

1. The temperature of the surface of the sun is about $6500^{\circ} \mathrm{C}$. What is this temperature i) on Rankine scale and ii) Kelvin scale

Solution:
Given : $\mathrm{C}=6500^{\circ} \mathrm{C} \quad \mathrm{R}=$? $\quad \mathrm{K}=$?
$\frac{C-0}{100}=\frac{R-492}{180}=R-492=\frac{C}{100} \times 180$
$=\frac{6500 \times 180}{100}=11700$
$R \quad=11700+492=12192^{\circ} R$
$\frac{C-0}{100}=\frac{K-273}{100}=6500+273=6773 \mathrm{~K}$

$$
\frac{C-0}{100}=\frac{F-32}{180}=\frac{K-273}{100}=\frac{R-492}{180}
$$

PROBLEMS:

2. Normal B.P. of liquid oxygen is $\mathbf{- 1 8 3 0 C}$. What is this temperature on Kelvin and Rankine scale

Solution:

Given :
$\mathrm{C}=-183^{\circ} \mathrm{C}$
$\mathrm{K}=$?
$R=$?

$$
\begin{aligned}
& \frac{C-0}{100}=\frac{K-273}{100}=-183+273=90 \mathrm{~K} \\
& \frac{C-0}{100}=\frac{R-492}{180}=R-492=\frac{C}{100} \times 180 \\
& =\frac{-183 \times 180}{100}=-329.4 \\
& R
\end{aligned}
$$

$$
\frac{C-0}{100}=\frac{F-32}{180}=\frac{K-273}{100}=\frac{R-492}{180}
$$

PROBLEMS:

3. At what temperature do Kelvin and Fahrenheit scale coincides? Solution:
Let x be the temperature at which Kelvin and Fahrenheit scale coincides

$$
\begin{aligned}
& \frac{K-273}{100}=\frac{F-32}{180} \\
& \frac{x-273}{100}=\frac{x-32}{180}=180 x-273 \times 180=100 x-3200 \\
& 180 x-100 x=-3200+49140 \\
& 80 x \quad=45940 \\
& x \quad
\end{aligned}
$$

$574.25^{\circ} \mathrm{F}=574.25 \mathrm{~K}$

$$
\frac{C-0}{100}=\frac{F-32}{180}=\frac{K-273}{100}=\frac{R-492}{180}
$$

PROBLEMS:
4. At what temperature do Celsius and Fahrenheit scale coincides?

Solution:
Let x be the temperature at which Ceisius and Fahrenheit scale coincides

$$
\begin{aligned}
& \frac{C-0}{100}=\frac{F-32}{180} \\
& \frac{x}{100}=\frac{x-32}{180}=180 x=100 x-3200 \\
& 180 x-100 x=-3200 \\
& 80 x \quad=-3200 \\
& x \quad=-3200 / 80=-40 \\
& -40^{\circ} \mathrm{C}=-40^{\circ} \mathrm{F}
\end{aligned}
$$

PLATINUM RESISTANCE THERMOMETER:

Principle: Change of resistance with change of temperature Designed by Siemen in 1871 and improved by Callender and Griffiths
Construction: Pure platinum wire wound in double spiral to avoid inductive effect.
Wire is wound on mica plate
Two ends of platinum wire connected to thick copper leads C C -compensating leads similar to platinum wire Platinum wire and compensating leads enclosed in a percelate tube
Tube is sealed and terminals provided at top

PLATINUM RESISTANCE THERMOMETER:

Resistance of wire at $t^{0} C=R_{t}$, and at $0^{0} C=R_{0}$
$R_{t}=R_{0}\left(1+\alpha t+\beta t^{2}\right) \cdots-\ldots(1)$
α and β are constants and depends on nature of material
To find α and β, resistance of platinum wire is determined at three fixed points

1) At MP of ice 2) BP of water 3) BP of sulphur $\left(444.6^{\circ} \mathrm{C}\right)$ and BP of oxygen $\left(-182.5^{\circ} \mathrm{C}\right)$
$R_{100}=R_{0}\left(1+\alpha 100+\beta\left(100^{2}\right)\right.$
$R_{444.6}=R_{0}\left(1+\alpha 444.6+\beta\left(444.6^{2}\right)\right.$

PLATINUM RESISTANCE THERMOMETER:

α and β can be determined $R_{t}=R_{0}\left(1+\alpha t+\beta t^{2}\right)$
β is very small

$$
\begin{aligned}
& R_{t}=R_{0}(1+\alpha t) \\
& R_{100}=R_{0}(1+\alpha 100) \\
& R_{t}-R_{0}=R_{0} \alpha t---- \text { (2) } \\
& R_{100}-R_{0}=R_{0} \alpha 100--(3)
\end{aligned}
$$

Dividing eq. (2) by (3) $\frac{R_{t}-R_{0}}{R_{100}-R_{0}}=\frac{t}{100}$
OR $\quad t=\left(\frac{R_{t}-R_{0}}{R_{100}-R_{0}}\right) \times 100$

SEEBECK EFFECT:

Effect: Current flows in a circuit consisting of two dissimilar metals when one junction is heated while other is cold No cell was used
Experiment of thermocouple of Fe and Cu
When both junctions are at $0^{\circ} \mathrm{C}$, No deflection in galvanometer
When one junction is at $0^{\circ} \mathrm{C}$ and other heated gradually ,Current flows in circuit
Current flows from Cu to Fe at hot junction and Fe to Cu at cold junction
Current increases until hot junction at $270^{\circ} \mathrm{C}$. Beyond it current decreases and finally at $540^{\circ} \mathrm{C}$ current is zero.
 Beyond $540^{\circ} \mathrm{C}$, direction of current reversed

SEEBECK EFFECT:

Current produced without cell or battery is thermo-electric current and branch thermoelectricity and effect Seebeck effect.
Neutral Temperature $\left(\mathrm{t}_{\mathrm{n}}\right.$:
The temperature of hot junction at which maximum current(thermo emf) flows in the circuit called neutral temp. for that couple.
It does not depends upon temp of cold junction Temperature of inversion $\left(\mathrm{t}_{\mathrm{i}}\right)$:

Temperature of hot junction at which current (thermo emf) becomes zero and changes direction called temperature of inversion

Depends on temp of cold junction

CAUSES OF SEEBECK EFFECT:

Seebeck effect explained on the basis of electron theory
There are always free electrons present in metals
Number of free electrons are different for different metals
When two dissimilar metals are joined to form junction, tendency of free electrons of one metal to diffuse into other

Flow continuous until contact P.D. is high enough
When junction is at same temperature, contact P.D. is zero
(12)

Phank you!!

