UNIT-III

TRANSPORT PHENOMENON IN GASES

BY

Bhanudas Narwade
Asst. Prof.
Degloor College , Degloor

TRANSPORT PHENOMENON IN GASES

Kinetic Theory:	Random motion, Molecular collision Molecules possesses mass, momentum and energy If not in equilibrium state or steady state, transportation occurs

Transport Phenomenon:

Phenomenon explained on the basis of movement of gas molecules to bring to steady state.

```
Viscosity :Transport of Momentum
Thermal conductivity : Transport of thermal energy
Self diffusion : Transport of mass
```


Mean Free Path:

Free Path : Distance covered by a gas molecule between any two successive collision

Mean free Path (λ) : Average distance covered by a gas molecule between any two successive collision

If S is total distance travelled after N collisions

Mean free path $\lambda=S / N$

Expression for mean free path:

For simplification Consider
i) Only the molecule under consideration is in motion and all other are at rest.
ii) The sphere of influence of has diameter "d"
v is the average velocity of molecule A
n is no. of molecules per cc
In one second A will collides with all molecules, the centre of which lies within radius d of cylinder and length v
Volume of cylinder $=\pi d^{2} v$
No. of molecules in a cylinder $=\pi d^{2} v n$
No. of collision in a second $=\pi d^{2} v n$

Average time interval between two successive collision $=\frac{1}{\pi d^{2} v n} \mathrm{sec}$
Average distance between two successive collision $=\frac{1}{\pi d^{2} v n} \times v=\frac{1}{\pi d^{2} n}$

Expression for mean free path:

The mean free path $(\lambda)=\frac{1}{\pi d^{2} n}$
$\pi d^{2}=\sigma$ is microscopic collision cross section of molecule
$\lambda=\frac{1}{\sigma n}$
Claussius expression
$\lambda=\frac{3}{4 \pi d^{2} n}$
Maxwell's expression

$$
\begin{equation*}
\lambda=\frac{1}{\sqrt{2} \pi d^{2} n} \tag{iv}
\end{equation*}
$$

From eqn I to iv $\quad \lambda \propto \frac{1}{d^{2}}$ if m is mass of each molecule density $\rho=m n$
$\lambda=\frac{1}{\sqrt{2}} \frac{m}{\pi d^{2} \rho}$ ie

$$
\lambda \propto \frac{1}{\rho} \quad \text { if } P \text { is pressure then } P=n k T \quad: n=\frac{P}{k T}
$$

$$
\begin{aligned}
& \lambda=\frac{1}{\sqrt{2} \pi d^{2} P} \\
& \lambda \quad \lambda \propto T
\end{aligned}
$$

Expression for mean free path:

CONCLUSION:

1. Smaller the size of molecule, larger mean free path ($\left.\lambda \propto \frac{1}{d^{2}}\right)$
2. Increase in temperature , increases separation of molecules and causes increase in mean free path $(\lambda \propto T)$
3. Decrease in density means molecules are widely separated resulted in increase in mean free path
4. Reduction of pressure of gas, increases the molecular distance hence mean free path increases $\left(\lambda \propto \frac{1}{P}\right)$

UNIT-III

TRANSPORT PHENOMENON IN GASES

BY

Bhanudas Narwade
Asst. Prof.
Degloor College , Degloor

Transport Phenomena: Viscosity: Transport of momentum

Different layers of gas may have different velocities
Relative motion of layers of gas wrt other
To be steady state , layers moving faster will transfer momentum to slower
This phenomena is viscosity of gas
Phenomena of viscosity of gas is due to transfer of momentum
Viscosity is property of fluid
Occurs due to frictional forces between adjacent layers moving parallel to each others Definition :
Tangential force per unit area required to maintain unit velocity gradient

Transport Phenomena: Viscosity: Transport of momentum

Newtons equation for viscosity is
$F=-\eta A \frac{d v}{d z}$
Suppose gas flows over horizontal surface OX Velocity of layer in contact with OX is zero and gradually increases along OZ
The change is unform with rate $\mathrm{dv} / \mathrm{dz}$
Consider layer $A B$ at certain distance from OX Velocity of layer $A B$ is v
Consider two layers EF and CD above and below AB respectively at a distance mean free path λ
Velocity of gas in layer $\mathrm{EF}=\mathrm{v}+\frac{d v}{d z} \lambda$
Velocity of gas in layer $C D=v-\frac{d v}{d z} \lambda$

Transport Phenomena: Viscosity: Transport of momentum

As molecules are moving in all possible direction parallel to X, Y, and Z axes
$1 / 6$ molecules moving parallel to any one axis in one particular direction
m is mass of each molecule and n is number of molecules per cc and c is average speed Number of molecules passing downward from EF to CD per unit area of layer $A B$ in one second $=\frac{n c}{6}$
Momentum carried downward from EF to CD per unit area of layer $A B$ in one second $=\frac{m n c}{6}\left(v+\frac{d v}{d z} \lambda\right)$

Transport Phenomena: Viscosity: Transport of momentum

Similarly number of molecules passing upward from $C D$ to EF per unit area of layer $A B$ in one second $=\frac{n c}{6}$ Momentum carried upward from CD to EF per unit area of layer $A B$ in one second $=\frac{m n c}{6}\left(v-\frac{d v}{d z} \lambda\right)$
Net momentum lost by layer EF and gain by CD per unit area of layer $A B$ in one second
$=\frac{m n c}{6}\left(v+\frac{d v}{d z} \lambda\right)-\frac{m n c}{6}\left(v-\frac{d v}{d z} \lambda\right)$
$=\frac{m n c}{6}\left\{\left(v+\frac{d v}{d z} \lambda\right)-\left(v-\frac{d v}{d z} \lambda\right)\right\}$
$=\frac{1}{3} m n c \lambda \frac{d v}{d z}$ this is rate of change of momentum

Transport Phenomena: Viscosity: Transport of momentum

$=\frac{1}{3} m n c \lambda \frac{d v}{d z}$ this is rate of change of momentum
According to Newton's second law of motion
Rate of change of momentum is force
$F=\frac{1}{3} m n c \lambda \frac{d v}{d z}--(2)$
From equation (1) and (2)
$\eta A \frac{d v}{d z}=\frac{1}{3} m n c \lambda \frac{d v}{d z}$
For unit area $A=1$
$\therefore \eta=\frac{1}{3} m n c \lambda=\frac{1}{3} \rho c \lambda$ since $m n=\rho$

Transport Phenomena: Viscosity: Transport of momentum

$\eta=\frac{1}{3} m n c \lambda$
But $\lambda=\frac{1}{\sqrt{2} \pi d^{2} n}$
$\begin{aligned} \eta & =\frac{1}{3} m n c \frac{1}{\sqrt{2}} \pi d^{2} n \\ \eta & =\frac{m c}{3 \sqrt{2} \pi d^{2}}\end{aligned}$
As $c \propto \sqrt{T}, \quad \eta \propto \sqrt{T}$
$\rho \propto p$ and $\lambda \propto \frac{1}{p}$, then $\rho \lambda=$ constant η is independent of pressure

Transport Phenomena: Viscosity: Transport of momentum

CONCLUSION:

1. Viscosity phenomena is due to transport of momentum
2. With increase of temperature, thermal agitation increases, velocity in a direction also increases resulting in increase of viscosity with temperature $(\eta \propto \sqrt{T})$
3. At sufficiently high pressure coefficient of viscosity of gas is independent of pressure

Transport Phenomena: Thermal conductivity of gases: Transport of Energy

Different layers of gas may have different temperatures
The molecules at higher temperature will have greater energy
To be steady state, molecules will transfer energy from region of higher temperature to lower temperature
This phenomena is thermal conductivity of gases
Phenomena of thermal conductivity of gases is due to transfer of energy
Thermal conductivity occurs when temperature gradient exists
Definition :
Amount of heat conducted per unit time per unit area per unit temperature gradient when material is in steady state

Transport Phenomena:

Equation of thermal conductivity of gas is
$Q=K A\left(\frac{d \theta}{d z}\right) t$
Suppose gas flows over horizontal surface OX The layer in contact with OX is cold and and temperature gradually increases along OZ The change is unform with rate $\mathrm{d} \theta / \mathrm{dz}$ Consider layer $A B$ at certain distance from OX Temperature of layer $A B$ is θ
Consider two layers EF and CD above and below $A B$ respectively at a distance mean free path λ
Temperature of gas in layer EF $=\theta+\frac{d \theta}{d z} \lambda$
Temperature of gas in layer $\mathrm{CD}=\theta-\frac{d \theta}{d z} \lambda$

Transport Phenomena:

As molecules are moving in all possible direction parallel to X, Y, and Z axes
$1 / 6$ molecules moving parallel to any one axis in one particular direction
m is mass of each molecule and n is number of molecules per cc and c is average speed c_{v} is specific heats of gas
Energy of molecule of gas $Q=m c_{v} \theta$
Number of molecules passing downward from EF to $C D$ per unit area of layer $A B$ in one second $=\frac{n c}{6}$
Energy carried downward from EF to CD per unit area of layer AB in one second $=\frac{m n c c_{V}}{6}\left(\theta+\frac{d \theta}{d z} \lambda\right)$

Transport Phenomena: Thermal conductivity of gases: Transport of Energy

Similarly number of molecules passing upward from CD to $E F$ per unit area of layer $A B$ in one second $=\frac{n c}{6}$ Energy carried upward from CD to EF per unit area of layer AB in one second $=\frac{m n c c_{V}}{6}\left(\theta-\frac{d \theta}{d z} \lambda\right)$
Net energy lost by layer EF and gain by CD per unit area of layer $A B$ in one second
$=\frac{m n c c_{V}}{6}\left(\theta+\frac{d \theta}{d z} \lambda\right)-\frac{m n c c_{V}}{6}\left(\theta-\frac{d \theta}{d z} \lambda\right)$
$=\frac{m n c c_{V}}{6}\left\{\left(\theta+\frac{d \theta}{d z} \lambda\right)-\left(\theta-\frac{d \theta}{d z} \lambda\right)\right\}$
$=\frac{m n c c_{v} \lambda}{6} \frac{d v}{d z}$ this is rate of change of energy

Transport Phenomena:

 Thermal conductivity of gases: Transport of Energy

 Thermal conductivity of gases: Transport of Energy}
$=\frac{m n c c_{v} \lambda}{3} \frac{d \theta}{d z} \quad---(2)$ this is rate of change of energy i.e. Heat From equation (1) and (2)
$Q=K A\left(\frac{d \theta}{d z}\right) t=\frac{m n c c_{V} \lambda}{3} \frac{d \theta}{d z}$
For unit area $A=1$
$\therefore K=\frac{1}{3} m n c c_{V} \lambda \quad=\frac{1}{3} \rho c c_{V} \lambda$ since $m n=\rho$ is density of gas

Transport Phenomena:

 Thermal conductivity of gases: Transport of Energy

 Thermal conductivity of gases: Transport of Energy}
$K=\frac{1}{3} m n c c_{V} \lambda$
But $\lambda=\frac{1}{\sqrt{2} \pi d^{2} n}$
$\mathrm{K}=\frac{1}{3} m n c c_{V} \frac{1}{\sqrt{2} \pi d^{2} n}$
$\mathrm{K}=\frac{m c c_{V}}{3 \sqrt{2} \pi d^{2}}$
As $c \propto \sqrt{T}, \quad K \propto \sqrt{T}$
$\rho \propto p$ and $\lambda \propto \frac{1}{P}$, then $\rho \lambda=$ constant K is independent of pressure

Transport Phenomena: Thermal conductivity of gases: Transport of Energy

$K=\frac{1}{3} m n c c_{V} \frac{1}{\sqrt{2} \pi d^{2} n}$
But $m=\frac{M}{N}$ i.e. mass of molecule $=\frac{\text { Molecular weight }}{\text { Avagadro Number }}$
And $c_{v}=\frac{C_{v}}{M}$ i.e. Principal sp. heats of gas $=\frac{\text { Molar sp.heats of gas }}{\text { Molecular weight }}$
$\mathrm{K}=\frac{1}{3 \sqrt{2}} \frac{c}{\pi d^{2}}\left(\frac{M}{N}\right) \frac{C_{v}}{M}$
$K=\frac{1}{3 \sqrt{2}} \frac{C_{v}}{N \pi d^{2}} c$
But average speed $c=\sqrt{\frac{8 K T}{\pi m}}$ Thermal conductivity is inversely proportional to sq. root of mass of molecule

Transport Phenomena: Thermal conductivity of gases: Transport of Energy

CONCLUSION:

1. Thermal conductivity of gas phenomena is due to transport of energy
2. With increase of temperature, thermal agitation increases, resulting in increase of Thermal conductivity with temperature ($K \propto \sqrt{T}$)
3. At sufficiently high pressure coefficient of Thermal conductivity of gas is independent of pressure
4. Mass of hydrogen is least, the thermal conductivity of hydrogen will be larger

Transport Phenomena: Diffusion of gas: Transport of mass

Different layers of gas may have different concentration i.e. (number of molecules per cc
The molecules at higher concentration will transfer to lower concentration
To be steady state, molecules diffuse from higher concentration region to lower concentration region
This phenomena is diffusion of gases
Phenomena of diffusion of gases is due to transfer of mass
Coefficient of diffusion : is defined as ratio of number of molecules crossing per unit area in one second to the rate of change of concentration with distance

Transport Phenomena:

Diffusion of gas: Transport of mass

Equation of coefficient of diffusion of gas is
$D=\frac{d N / d t}{d n / d z}-(1)$
Suppose gas flows over horizontal surface OX
The layer in contact with OX is at lower concentration and concentration gradually increases along OZ The change is unform with rate $\mathrm{d} n / \mathrm{dz}$ Consider layer $A B$ at certain distance from OX Concentration of layer AB is n Consider two layers EF and CD above and below AB respectively at a distance mean free path λ

Transport Phenomena: Diffusion of gas: Transport of mass

Concentration of gas in layer $\mathrm{EF}=n+\frac{d n}{d z} \lambda$
Concentration of gas in layer $\mathrm{CD}=n-\frac{d n}{d z} \lambda$
As molecules are moving in all possible direction parallel to X, Y, and Z axes
$1 / 6$ molecules moving parallel to any one axis in one particular direction
If c is average speed of molecules
Number of molecules passing downward from EF to $C D$ per unit area of layer $A B$ in one second $=\frac{c}{6}\left(n+\frac{d n}{d z} \lambda\right)$

Transport Phenomena: Diffusion of gas: Transport of mass

Similarly number of molecules passing upward from CD to EF per unit area of layer AB in one second
$=\frac{c}{6}\left(n-\frac{d n}{d z} \lambda\right)$
Net number of molecules lost by layer EF and gain by CD per unit area of layer $A B$ in one second

$$
=\frac{c}{6}\left(n+\frac{d n}{d z} \lambda\right)-\frac{c}{6}\left(n-\frac{d n}{d z} \lambda\right)
$$

$=\left\{\frac{c}{6}\left(n+\frac{d n}{d z} \lambda\right)-\left(n-\frac{d n}{d z} \lambda\right)\right\}$
$=\frac{1}{3} c \lambda \frac{d n}{d z}$ Gives rise to phenomenon of diffusion

Transport Phenomena: Diffusion of gas: Transport of mass

From equation (1) and (2)
$D=\frac{d N / d t}{d n / d z}=\frac{1}{3} c \lambda \frac{d n}{d z}$
$\therefore D=\frac{1}{3} c \lambda$

$$
\text { As } c \propto \sqrt{T}, \text { And } \lambda \propto \frac{T}{P} \quad \mathrm{D} \propto T^{3 / 2}
$$

Transport Phenomena: Diffusion of gas: Transport of mass

CONCLUSION:

1. Diffusion of gas phenomena is due to transport of mass
2. With increase of temperature, rate of flow of molecules increases ($D \propto T^{3 / 2}$)
3. At low pressure, rate of flow of molecules decreases $\left(D \propto \frac{1}{P}\right)$

Inter Relation Between Three Transport Coefficients:

Coefficient of viscosity of gas
Coefficient of thermal conductivity of gas
Coefficient of Diffusion of gas

$$
\begin{equation*}
\eta=\frac{1}{3} \rho c \lambda \tag{1}
\end{equation*}
$$

$$
K=\frac{1}{3} \rho c c_{V} \lambda--(2)
$$

$$
\begin{equation*}
D=\frac{1}{3} c \lambda \tag{3}
\end{equation*}
$$

From equation 1 and 2

$$
\frac{\eta}{K}=\frac{1}{c_{v}} O R \quad \eta=\frac{K}{c_{v}} O R \quad K=\eta c_{v}
$$

From equation (2) and (3)

$$
\frac{D}{K}=\frac{1}{\rho c_{v}} \text { OR } \quad D=\frac{K}{\rho c_{v}} \text { OR } K=D \rho c_{v}
$$

From equation (1) and (3)

$$
\frac{\eta}{D}=\rho \quad O R \eta=D \rho O R \quad D=\frac{\eta}{\rho}
$$

