UNT-I
 MEOHANCS

Presented by:
Dr. Bhanudas Narwade DEPT. OF PHYSICS

DEGLOOR COLLEGE,DEGLOOR

Basic: Mechanics:

- Mass: The amount of matter that body contains
- Force: The external egency that changes or tends to change the state of rest or uniform motion of body
- Inertia: Inability of material body to change by itself its state of rest or uniform motion
- Work done: product of force and displacement in the direction of force
- Energy: S Capacity to do work.

Newton's laws of motion:

- Newton's First law of motion: Every body in this universe, continuous to be in a state of rest or uniform motion in a straight line, unless it is compelled to change that state by forces impressed on it.
- Also called law of inertia

Gives definition of force

Newton's second law of motion:

- STATEMENT: The rate of change of momentum of a body is directly proportional to impressed force and takes place in the direction of force
- Gives measure of force

Newton's Second Law

If you apply more force to an object, it accelerates at a higher rate.

Newton's third law of motion:

- STATEMENT: To an every action there is always an equal and opposite reaction
- Specifies the property of force

NEWTON'S LAW OF GRAVITY:

- STATEMENT: Every particle of matter in the universe attract every other particle of matter with a force which is directly proportional to product of their masses and inversely proportional to square of distance between them

$$
\begin{aligned}
& \mathrm{F} \propto \mathrm{~m}_{1} \mathrm{~m}_{2} \\
& \mathrm{~F} \propto \frac{1}{r 2} \\
& \mathrm{~F} \propto \frac{m 1 m 2}{r 2} \\
& \mathrm{~F}=\mathrm{G} \frac{m 1 m 2}{r 2}
\end{aligned}
$$

Newton's Law of Universal Gravitation

$$
F_{1}=F_{2}=G \frac{\boldsymbol{m}_{1} \times \boldsymbol{m}_{2}}{\boldsymbol{r}^{2}}
$$

KEPLER'S LAWS OF PLANETARY MOTION:

- Kepler's First Law of planetary motion (Law of orbit):
- STATEMENT: Every planet revolves around the Sun in an elliptical orbit where sun is situated at one of foci of ellipse.

Kepler's ${ }^{\text {st }}$ Law

1. Kapler'sFirst Law of Planetary Motionstates that the orbits of planetary bodies are ellipses with the pun st one of the two foci of the ellipse

KEPLER'S LAWS OF PLANETARY MOTION:

- Kepler's Second law of Motion (Law of equal areas):
- STATEMENT :Line joining sun and planet sweeps out equal areas in equal interval of time i.e. Areal velocity of planet is constant.

Kepler's Second Law

KEPLER'S LAWS OF PLANETARY MOTION:

- Kepler's Third law of Motion (Harmonic Law):
- STATEMENT :The square of period of revolution of planet around the sun is directly proportional to cube of semi-major axis of ellipse

Kepler's 3 rd Law

Wher sotreching is in ortit, Cerifipetal Force a caused try Arevitational Force.

$$
\begin{aligned}
& \frac{m v^{2}}{x}=G \frac{M m}{\pi^{2}}+\square_{\Delta}^{\nu} \\
& \frac{M \pi}{\pi^{2}} \rightarrow \frac{T^{2}}{r^{-3}}=\frac{4 \pi^{2}}{G \pi} \\
& \text { The } 3^{\text {red }} \text { Law- The square of the } \\
& \text { orbital pieriod of a planet is } \\
& \text { directly proportiomal to the } \\
& \text { cube of the semi-maloor axis of } \\
& \text { its orber }
\end{aligned}
$$

GRAVITATIONAL FIELD AND INTENSITY:

- Space around a body, within which its gravitational attraction is experienced
- Intensity at a point is force experienced by unit mass placed in a field.
- OR

Rate of change of gravitational potential

- If gravitational field at a point is E , the force acting on a mass m is
- $\quad \mathrm{F}=\mathrm{m} \mathrm{E}$
- $\mathrm{E}=\mathrm{F} / \mathrm{m}$

Also the gravitational field is the negative gradient of
gravitational potential $E=-\frac{d V}{d x}$

GRAVITATIONAL POTENTIAL:

- Amount of work done in moving unit mass from the point to infinity against the gravitational force of attraction.
- Measure of energy in a field at a point compared to infinite distance away
- Zero of potential at infinity
- Consider body of mass m.

- P is point at a distance r
- The gravitational intensity at P

$$
E=\frac{F}{m}=\frac{G M}{r^{2}}
$$

GRAVITATIONAL POTENTIAL AT A POINT:

- $E=-\frac{d V}{d r}$
- $d V=\left(\frac{-G M}{r^{2}}\right) d r$
- Integrating between limits infinity and r ,
- $\int d V=\int_{r}^{\infty}\left(\frac{-G M}{r^{2}}\right) d r=\left[\frac{G M}{r}\right]=\left[\frac{G M}{\infty}-\frac{G M}{r}\right]$
- $V=-\frac{G M}{r}$
- The gravitational potential at a point due to a point mass
- $V=-\frac{G M}{r}$

GRAVITATIONAL POTENTIAL ENERGY:

- Gravitational potential energy at a point is the work done to move a mass from infinity to that point.
- The gravitational potential energy is product of mass of body and gravitational potential at that point.Potential Energy $=m\left(-\frac{G M}{r}\right)$
- Gravitational Potential Energy depends upon
- 1) Mass of heavy body M
- 2) Distance between two masses r
- At infinity it is maximum and zero. At all other points it is negative

CONSERVATION LAWS:

- Familiar conservation laws: Energy, linear momentum, Angular momentum, charge etc
- Advantages:
- 1) Understanding symmetry in the universe
- 2) Powerful tool for solving problems
- 3) Not depends on details of trajectory and forces involved.
- 4) Enables the consequences of equation of motion
- 5) Involved in Physics of elementary particles
- 6) predicted new elementary particles
- 7) tackling in new and not understood problems
- 8) Prediction of certainty that particular phenomena will not ocuurs

WORK:

Consider particle p moving along a curve AB under the action of variable force F . r -position vector of particle
F displaces the particle through distance dr
Infinitesimal small amount of work done dW is

$$
\mathrm{dW}=\quad \mathrm{F} . \mathrm{dr}
$$

If particle moved from point A with position vector $r 1$
to point B when position vector r 2
Total work done by force on particle
$W=\int_{A}^{B} F . d r=\int_{r_{1}}^{r_{2}} F . d r$
F makes angle θ with tangent to the path at any point
$W=\int_{A}^{B} F \operatorname{Cos} \theta d r$ (2)

- F and θ may changes from point to point
- The integral form of equation along path AB (line integral)
- $\int_{A}^{B} F . d r=\int_{A}^{B} F \operatorname{Cos} \theta d r \quad \operatorname{Cos} \theta$ is components of force along path
- Work done: Line integral of tangential components of force and taken over actual line of motion.
- If F remains constant and displacement r is along straight line then
- $W=\int_{A}^{B} f . d r=F \cdot r=F \cos \theta r$
- Work: Product of components of force along the displacement and distance moved by the particle
- If F_{x}, F_{y} and F_{z} are rectangular components of F and $d r=d x \vec{\imath}+d y \vec{\jmath}+d z \vec{k}$ $W=\int_{A}^{B}\left(F_{X} \vec{\imath}+F_{y} \vec{\jmath}+F_{z} \vec{k}\right) \cdot(d x \vec{\imath}+d y \vec{\jmath}+d z \vec{k})$
- $W=\int_{A}^{B}\left(F_{x} d x+F_{y} d y+F_{z} d z\right)$
- If number of forces F1,F2 and F3 are acting on particle so that resultant force on particle is $\mathrm{F}=\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3$
- Work done on particle
- $W=\int_{A}^{B} F . d r=\int_{A}^{B}\left(F_{1}+F_{2}+F_{3}+\cdots.\right) d r$
- $W=\int_{A}^{B} F_{1} d r+\int_{A}^{B} F_{2} d r+\cdots$..
- Sum of work done by each force

POWER:

- Rate of doing work
- $\mathrm{P}=\mathrm{dW} / \mathrm{dt}$
- If F is instantaneous force acting on the particle then
- Instantaneous power is
- $\quad P=\frac{d W}{d t}=\frac{F . d r}{d t}=F . v$
- Average Power during time interval t is
- $P_{a v}=\frac{W}{t}$

KINETIC ENERGY-WORK ENERGY THEOREM:

- Statement: Work done on a particle is equal to change in its kinetic energy
- Energy is capacity of doing work
- Measured as amount of work which it can do in the position in which it is
- Energy due to motion is kinetic energy
- According to Newtons second law of motion $\mathrm{F}=\mathrm{ma}$
- $F=m \cdot \frac{d v}{d t} \quad$ where $\frac{d v}{d t}$ is acceleration produced in particle
- Amount of work done on a particle when moves from A point to B
- $W=\int_{A}^{B} F . d r=m \int_{A}^{B} \frac{d v}{d t} . d r$
- Now $d r=\frac{d r}{d t} . d t=v . d t$
- $\frac{d v}{d t} \cdot d r=\left(\frac{d v}{d t} \cdot v\right) d t=\frac{d}{d t}\left(\frac{1}{2} v \cdot v\right) d t=d\left(\frac{v^{2}}{2}\right)$
- $\therefore W=\frac{m}{2} \int_{A}^{B} d\left(v^{2}\right)=\frac{m}{2}\left[v_{B}^{2}-v_{A}^{2}\right]$
- Where v_{A} and v_{b} speeds of particle at A and B
- $W=\int_{A}^{B} F . d r=\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}=$ Change in kinetic energy

Thus Work done on particle only depends on initial and final speed of particle and independent upon nature of force and path followed by particle.

CONSERVATION OF ENERGY FOR A PARTICLE : ENERGY FUNCTION:

- Work done by a force on a particle of mass m will
- $W=\int_{1}^{2} F . d r=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}=U_{1}-U_{2}=$ change in kinetic energy
- Equation expresses that in a conservative force field if KE of particle increases in moving from one point to another then, its potential energy decreases
- $\frac{1}{2} m v_{1}^{2}+U_{1}=\frac{1}{2} m v_{2}^{2}+U_{2}$
- $K_{1}+U_{1}=K_{2}+U_{2}$
- Law of conservation of energy
- Sum of KE and PE of particle remains constant at any point of conservative force field
- The quantity $\mathrm{E}=\mathrm{K}+\mathrm{U}$ Called ENERGY FUNCTION

MOTION OF BODY NEAR THE SURFACE OF THE EARTH:

- Body of mass m situated at height h in rest above surface
- PE is 0 at surface
- Let the x direction be normal to the surface and directed upward
- If body start to fall at any instant at height x above surface,
- The work done by gravitational force -mg on body
- $W=\int_{h}^{x}(-m g) d x=-m g(x-h)=m g(h-x)$
- Work done will increases body's K.E.
- $W=\frac{1}{2} m v^{2} \quad \therefore$ Initial velocity $=0$
- $\therefore \frac{1}{2} m v^{2}=m g(h-x)$
- $\therefore m g h=\frac{1}{2} m v^{2}+m g x$
- P.E. at x is mgx ,
- TE at Height " h " above surface
- Initially body has only PE and no KE
- Initial $\mathrm{TE}=\mathrm{KE}+\mathrm{PE}=0+\mathrm{mgh}=\mathbf{m g h}$
- TE at Surface $(x=0)$
- PE at surface $=0, \mathrm{KE}$ at surface $=\frac{1}{2} m v^{2}$
- TE at surface $\frac{1}{2} m v^{2}=\mathbf{m g h}$
- TE at any Height "x"
- PE at height " x " $=m g x$ and KE at height " x " $=\frac{1}{2} m v^{2}$
- TE at any height " x " $=m g h=\frac{1}{2} m v^{2}+m g x=\mathbf{m g h}$
- $\quad \therefore$ TE of freely falling body remains constant through out its motion

NON-CONSERVATIVE FORCE:

- Non-conservative force : Work done by force, which moves particle between two points depends upon path between those points.
- Frictional and viscous forces are non conservative forces.
- For non-conservative force work done around the closed path not zero and particle loses its KE along path.
- For conservative force, $\mathrm{KE}+\mathrm{PE}=\mathrm{E}=$ Constant
- $\Delta \mathrm{KE}+\Delta \mathrm{PE}=0=\Delta \mathrm{E}$
- $W_{c}=-\Delta \mathrm{PE}$ Negative increase in PE
- In addition to conservative force nonconservative force due to friction
- If Wf work done by frictional and Wc by conservative forces
- $\mathrm{W}_{\mathrm{f}}+\mathrm{W} c=\Delta \mathrm{KE}$ But

$$
\mathrm{Wc}=-\Delta \mathrm{PE}
$$

- $\Delta \mathrm{KE}+\Delta \mathrm{PE}=\mathrm{W}_{\mathrm{f}}$
- When frictional forces acts on particle total mechanical energy is not constant

